
Cost Estimation using NoDoC Models

INDEX

- **1.- Introduction**
 - Categories of total capital cost estimates
 - Cost estimation methodg
- 2.- Short cuts for equipment sizing procedures
 - Vessel (flash drums, storage tanks, decanters and some reactors)
 - Reactors
 - Heat transfer equipment (heat exchangers, furnaces and direct fired heaters)
 - Distillation columns
 - Absorbers columns
 - Compressors (or turbines)
 - Pumps
 - Refrigeration
- 3.- Cost estimation of equipment
 - Base costs for equipment units
 - modular method

1.- INTRODUCTION

Process Alternatives Synthesis (candidate flowsheet) Analysis (Preliminary mass and energy balances) <u>SIZING (Sizes and capacities)</u> <u>COST ESTIMATION (Capital and operation)</u> Economic Analysis (economic criteria)

SIZING

Calculation of all physical attributes that allow a unique costing of this unit

- Capacity, Height - Pressure rating -Cross sectional area – Materials of construction

Short-cut, approximate calculations (correlations) → Quick obtaining of sizing parameters → Order of magnitude estimated parameters

<u>COST</u>

Total Capital Investment or Capital Cost: Function of the process equipment → The sized equipment will be costed * Approximate methods to estimate costs Manufacturing Cost: Function of process equipment and utility charges

Categories of total capital cost estimates

based on accuracy of the estimate

NoDoC Model

Level of Estimation	Based on	Error %	Cost Etimation Duration	Use To	Model Output	Example									
	- Technology			- Review Project Execution Alternatives											
	- Capacity	30-40		- Create scenarios	Opex and Capex by the Factory	what is the capex for a									
Conceptual			Couple of Hours	- Technical assessment	Production and Process Units and by Project Phase (E,P,C)	100,000 bbpd oil refinery?									
				- Selection of the execution method											
				- Financial and economic Analysis											
	- Basic Design			- Find Source of Finance											
	Documents			- Investment Analysis	Opex, Non Opex and Capex by the	what is the capex for process									
Basic	Basic - main Equipment Factored		Couple of Days	- As a basis for Evaluation of EPC Contractor's Commercial Proposal	Factory Production and Process Units and Main Equipment within the Units and by Long Lead Items*	and utility units of a Refinary with 100,000 bbpd capacity? What is the main equipment									
													- Prepare tender Documents	and by Project Phase (E,P,C)	cost within the Units?
				- prepare vendor list											
	- Detailed Design			- Construction Control		More Detailed Estimate of an									
	Documents			- Cost Control	Opex, Non Opex and Capex by the Factory Production and Process	oil refinary such as the equipment and material cost									
Detailed	- Full MTO Factored	5-15	Couple of Weeks	- Sub-Contractors Selection and Control	Units and Main Equipment within the Units and by Long Lead Items* and by Project Phase (E,P,C) and by bulk materials, by discipline,	and what are & how much reaources the project needs, and what is the cost for E,P,C,I,H,Co,Com									
* A "Long Lead item"	is any piece that is required	to be engage	d in the project with a p	rocurement cost and time that is likely to af	ect the project completion Cost and	date.									

Cost Estimation Method

• Equipment purchase cost: equations #A Ubi ZWi f]b['7 cgh

Based on a power law expression: Williams Law C = BC = Co $(S/So)^{\alpha} \rightarrow$

→ Economy of Scale (incremental cost C, decrease with larger capacities S)

Based on a polynomial expression $BC = \exp \{A_0 + A_1 [\ln (S)] + A_2 [\ln (S)]^2 + ...\}$

• Installation: Module Factor, MF, affected by BC, taking into account labor, piping anstruments, accessories, etc.

Typical Value of MF=2.95 \rightarrow equipment cost is almost 3 times the BC. Installation = (BC)(MF)-BC = BC(MF-1)

• For special materials, high pressures and special designs abroad base capacities and costs (Co, So), the Materials and Pressure correction Factors, MPF, are defined.

Uninstalled Cost = (BC)(MPF) Total Installed Cost = BC (MPF+MF-1)

• To update cost from mid-1968, an Update Factor, UF to account for inflation is apply.

Updated bare module cost: BMC = UF(BC) (MPF+MF-1)

Materials and Pressure correction Factors: MPF

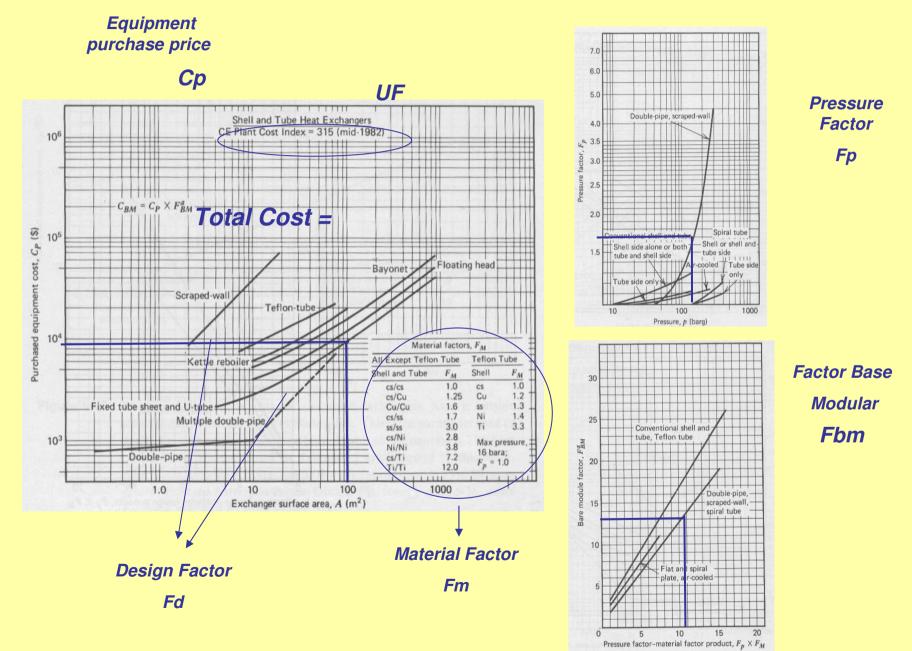
Empirical factors that modified BC and evaluate particular instances of equipment beyond a basic configuration: Uninstalled Cost = (BC x MPF)

 $MPF = \Phi (Fd, Fm, Fp, Fo, Ft)$

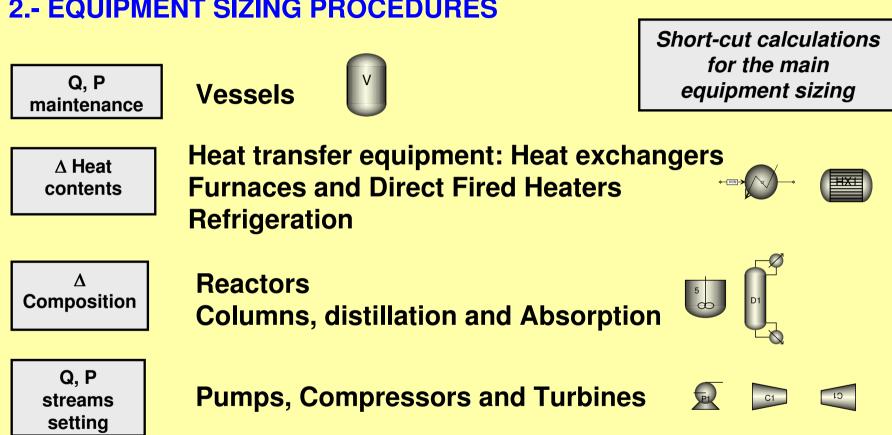
Fd: Design variation

Fp: Pressure variation

Fm: Construction material variation Fo: Operating Limits (Φ of T, P)


Ft: Mechanical refrigeration factor Φ (T evaporator)

EQUIPMENT	MPF
Pressure Vessels	Fm . Fp
Heat Exchangers	Fm (Fp + Fd)
Furnaces, direct fired heaters, Tray stacks	Fm + Fp + Fd
Centrifugal pumps	Fm . Fo
Compressors	Fd


Equipment Sizing Procedures

Need <u>C</u> and <u>MPF</u> \rightarrow required the flowsheet mass and energy balance (Flow, T, P, Q)

An example of Cost Estimation

7

2.- EQUIPMENT SIZING PROCEDURES

SHORTCUTS for VESSEL SIZING (Flash drums, storage tanks, decanters and some reactors)

1) Select the V for liquid holdup; $\tau = 5 \text{ min} + \text{equal vapor volume}$

 $V=(F_L/\rho_L^* \tau)^*2$

2) Select L=4D

 $V=\pi D^2/4^*L \rightarrow D=(V/\pi)^{1/3}$; If $D \le 1.2$ m Vertical, else Horizontal

•Materials of Construction appropriate to use with the Guthrie's factors and pressure ($P_{rated} = 1.5 P_{actual}$)

Basic Configuration for pressure vessels

- Carbon steel vessel with 50 psig design P and average nozzles and manways

- Vertical construction includes shell and two heads, the skirt, base rings and lugs, and possible tray supports.

- Horizontal construction includes shell, two heads and two saddles

MPF = Fm . Fp; Fm depending shell material configuration (clad or solid)

Materials of Construction for Pressure Vessels

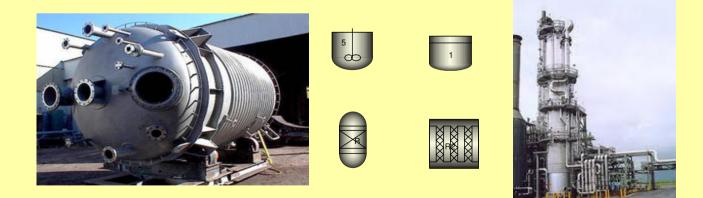
High Tempo	High Temperature Service		rature Service
Tmax (°F)	<u>Steel</u>	Tmin (°F)	Steel
950	Carbon steel (CS)		
1150	502 stainless steels (SS)	-50	Carbon steel (CS)
1300	410 SS; 330 SS	-75	Nickel steel (A203)
1500	304,321,347,316 SS.	-320	Nickel steel (A353)
	Hastelloy C, X Inconel	-425	302,304,310,347 (SS)
2000	446 SS, Cast stainless, HC		

Bc8c7 Material and pressure factors for pressure vessels: MPF = Fm Fp

<u>Shell N</u> Carbon	<mark>laterial</mark> Steel (C	S)	<u>Clac</u> 1.(<mark>d, Fm</mark>)0	<u>Solic</u> 1.0	<mark>d, Fm</mark> 00			
Stainles	ss 316 (S	SS)	2.1	Б	3.	.Ì 7			
Monel (Ni:Cr/2:1	alloy)	3.J	19	6.	.l Ì			
Titaniur <mark>Vessel</mark>	n Pressur	<u>e (psig)</u>	4.1	3/*******		È			
Up to	50	100	200	300	400	500	900	1000	
Fp	1.00	1.0Ì Á	₩₩F.G5	₩₩ F .2J	1.39	1.49	2.49	2.70	10

SHORT CUT for REACTORS SIZING

First step of the preliminary design \rightarrow Not kinetic model available.


Mass Balance based on Product distribution \rightarrow High influence in final cost

Assumptions: Reactor equivalent to laboratory reactor, adiabatic reactors are isotherm at average T.

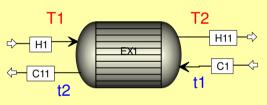
Assume space velocity (S in h⁻¹)

 $\textbf{S}=(1/\tau)=\mu\,/\rho\,\,\textbf{V}_{cat}\,;\quad \textbf{V}=\textbf{V}_{cat}\,/\,\,\textbf{1-}\,\epsilon$

 μ = Flow rate; ρ = molar density; V_{cat}= Volume of catalyst; ϵ = Void fraction of catalyst (e.g. ϵ =0.5)

HEAT TRANSFER EQUIPMENT SIZING

Heat exchanger types used in chemical process


By function

- Refrigerants (air or water) - Condensers (v, $v+l \rightarrow l$) - Reboilers, vaporizers ($l \rightarrow v$) - Exchangers in general

By constructive shape

- Double pipe exchanger: the simplest one
- Plate and frame exchangers
- Direct contact: used for cooling and quenching
- Fired heaters: Furnaces and boilers

Shell and tube countercurrent exchanger, steady state

- Shell and tube exchangers: used for all applications

- Jacketed vessels, agitated vessels and internal coils

- Air cooled: used for coolers and condensers

$\mathbf{Q} = \mathbf{U} \mathbf{A} \Delta \mathbf{T}_{\mathsf{Im}}$

Q: From the energy balance

U: Estimation of heat transfer coefficient. Depending on configuration and media used in the Shell and Tube side: L-L, Condensing vapor-L, Gas-L, Vaporizers). (Perry's Handbook, 2008; www.tema.org).

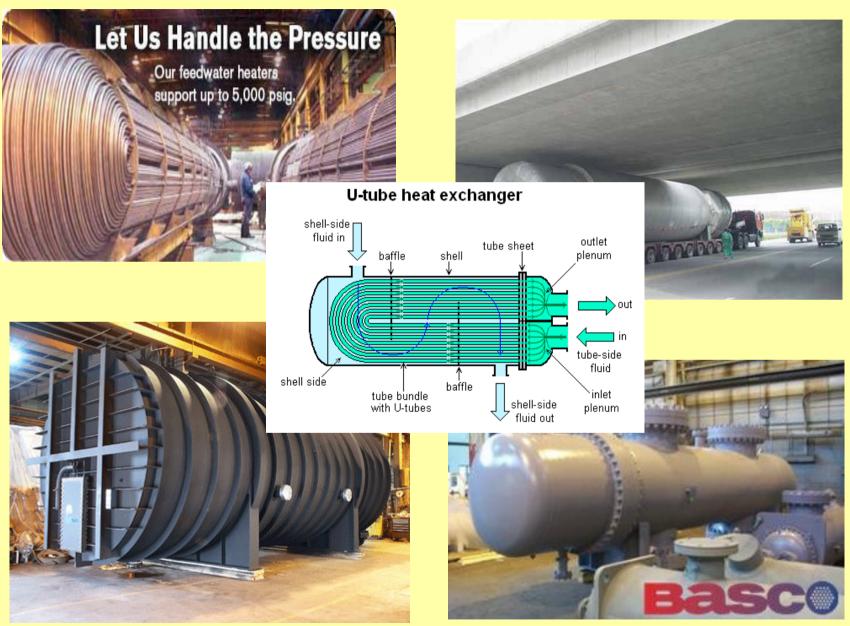
A: Area

- ΔT_{lm} : Logarithmic Mean $\Delta T = (T1-t2)-(T2-t1)/ln (T1-t2/T2-t1)$
- If phase changes \rightarrow Approximation of 2 heat exchangers (A=A1+A2)
- Maximum area A \leq 1000 m², else \rightarrow Parallel HX

Material and pressure factors for Heat Exchangers: MPF: Fm (Fp + Fd)								
Design Type	<u>Fd</u>		Vesse	l Pres	sure (p	sig)		
Kettle Reboiler	1.35							
Floating Head	1.00		Up to	150	300	400	800	1000
U Tube	0.85		Fp	0.00	0.10	0.25	0.52	0.55
Fixed tube sheet	0.80							
Shell/Tube Materials, Fm Surface Area (ft ²) CS/ CS/ CS/ SS/ CS/ Monel CS/ Ti/								
	CS	Brass	SS	SS		Monel	<u> </u>	Ti
Up to 100	1.00	1.05	1.54	2.50	2.00	3.20	4.10	10.28
100 to 500	1.00	1.10	1.78	3.10	2.30	3.50	5.20	10.60
500 to 1000	1.00	1.15	2.25	3.26	2.50	3.65	6.15	10.75
1000 to 5000	1.00	1.30	2.81	3.75	3.10	4.25	8.95	13.05

FURNACES and DIRECT FIRED HEATERS (boilers, reboilers, pyrolysis, reformers)

Q = Absorbed duty from heat balance


• Radiant section (q_r=37.6 kW/m² heat flux) + Convection section (q_c=12.5 kW/m² heat flux). Equal heat transmission (kW) $\rightarrow A_{rad}=0.5 \times kW/q_r$; $A_{conv}=0.5 \times kW/q_c$

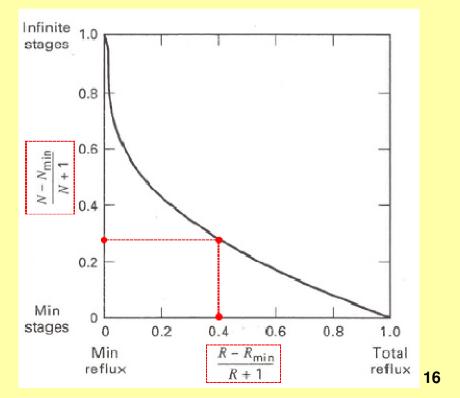
• Basic configuration for furnaces is given by a process heater with a box or Aframe construction, carbon steel tubes, and a 500 psig design P. This includes complete field erection.

• Direct fired heaters is given by a process heater with cylindrical construction, carbon steel tubes, and a 500 psig design.

Guthrie MPF for Furnaces: MPF= Fm+Fp+Fd					Guthrie MPF for Direct Fired Heaters					
Desigr	esign Type Fd MPF: Fm + Fp + Fd									
Process	Heater	1.00					Design	Type	Fd	
Pyrolisis	6	1.10					Cylindric			
Reforme	er	1.35					Dowther		1.33	
Vesse	Press	ure (ps	<u>ig)</u>				Vessel	Pressu	ure (psig)
Up to	500	1000	1500	2000	2500	3000	Up to	500	1000	1500
Fp	0.00	0.10	0.15	0.25	0.40	0.60	Fp	0.00	0.15	0.20
Radiar	<u>nt Tube</u>	Materi	al, Fm	<u>l</u>			Radian	t Tube	Material	, Fm
Carbon	Steel	0.	00				Carbon	Steel	0.00)
Chrome	/Moly	0.	35				Chrome	/Moly	0.45	5
Stainles	s Steel	0.	75				Stainles	s Steel	0.50)

HEAT EXCHANGERS

SHORT CUT for DISTILLATION COLUMS SIZING


Fenske's equation applies to any two components lk and hk at infinite reflux and is defined by N_{min} , where αij is the geometric mean of the α 's at the T of the feed, distillate and the bottoms.

$$N_{\min} = \frac{\log\left(\frac{x_{Dlk} / x_{Blk}}{x_{Dhk} / x_{Bhk}}\right)}{\log\left(\overline{\alpha}_{lk/hk}\right)} \qquad \overline{\alpha}_{lk/hk} = \left(\alpha_{D lk/hk} \alpha_{F lk/hk} \alpha_{B lk/hk}\right)^{1/3}$$

 R_{min} is given by **Underwood** with two equations that must be solved, where q is the liquid fraction in the feed.

$$1 - q = \sum \frac{\alpha_i \ x_{Fi}}{\alpha_i - \phi} \qquad \qquad R_{min} + 1 = \sum \frac{\alpha_i \ x_{Di}}{\alpha_i - \phi}$$

Gilliland used an empirical correlation to calculate the final number of stage N from the values calculated through the Fenske and Underwood equations (N_{min} , R, R, R_{min}). The procedure use a diagram; one enters with the abscissa value known, and read the ordinate of the corresponding point on the Gilliland curve. The only unknown of the ordinate is the number of stage N.

SHORT CUT for DISTILLATION COLUMS SIZING

Simple and direct correlation for (nearly) ideal systems (Westerberg, 1978)

- Determine $\alpha_{lk/hk}$; $\beta_{lk} = \xi_{lk}$; $\beta_{hk} = 1 \xi_{hk}$ ٠
- Calculate tray number Ni and reflux ratio Ri from correlations (i= lk, hk): ٠

Ni = 12.3 / $(\alpha_{lk/hk} - 1)^{2/3}$. $(1 - \beta_i)^{1/6}$ Ri = 1.38 / $(\alpha_{lk/hk} - 1)^{0.9}$. $(1 - \beta_i)^{0.1}$

- Theoretical n^o of trays $N_T = 0.8 \text{ max}[\text{Ni}] + 0.2 \text{ min}[\text{Ni}]; R = 0.8 \text{ max}[\text{Ri}] + 0.2 \text{ min}[\text{Ri}]$
- Actual n^o of trays $N = N_T/0.8$
- For H consider 0.6 m spacing (H=0.6 N); Maximum H=60 m \rightarrow else, 2 columns
- * Calculate column diameter, D, by internal flowrates and taking into account the vapor fraction of F. Internal flowrates used to sizing condenser, reboiler

Design column at 80% of linear flooding velocity

$$U_f = C_{sb} \left[\frac{\rho_L - \rho_G}{\rho_G} \right]^{0.5} \left(\frac{20}{\sigma} \right)^{0.2}$$

 $Q_{reb} = V \Delta H_{vap}^k$

$$A = \frac{\pi D^2}{4} = \left| \frac{\overline{V}}{0.8 U_f \varepsilon \rho_g} \right|$$
 If D> 3m \rightarrow Parallel columns

- * Calculate heat duties for reboiler and condenser

$$Q_{cond} = H_V - H_L = \sum_{k=1}^n \left(\mu_D^k + \mu_L^k\right) \Delta H_{vap}^k = \frac{V}{D} \sum_{k=1}^n \mu_{dk} \Delta H_{vap}^k$$

* Costing vessel and stack trays (24" spacing)

DISTILLATION COLUMNS

Fs

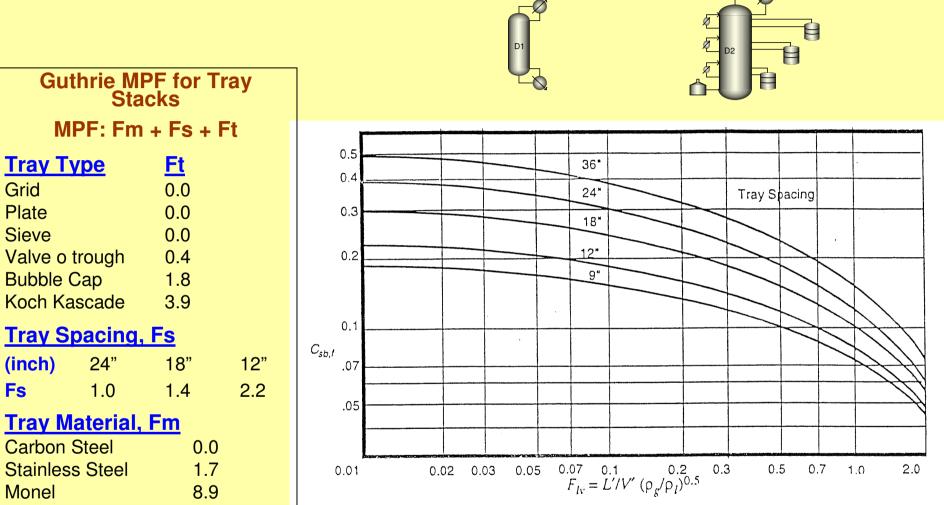
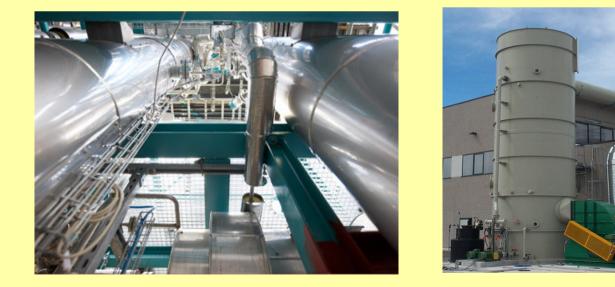


FIGURE 4.4 Flooding limits for bubble cap and perforated trays. L'/V' is the liquid/gas mass ratio at the point of consideration. (Data taken from Fair, 1961.)

DISTILLATION COLUMNS


SHORT CUT for ABSORBERS COLUMS SIZING

Sizing similar to the distillation columns

 $N_T \rightarrow Kremser equation$

$$V = \ln \left[\frac{l_{0}^{n} + (r^{n} - A_{E}^{n}) v_{N+1}^{n}}{l_{0}^{n} - A_{E}^{n} (1 - r^{n}) v_{N+1}^{n}} \right] / \ln(A_{E}^{n})$$

- Assumption: v-I equilibrium \rightarrow but actually there is mass transfer phenomena (e.g. simulation of CO₂- MEA absorption) \rightarrow 20% efficiency in n^o trays \rightarrow N = N_T/0.2
- Calculate H and D for costing vessel and stack trays (24" spacing)

X

SHORT CUT for COMPRESSORS (or TURBINES) SIZING

Centrifugal compressors are the most common compressors (High capacities, low compression ratios –r-) *vs.* Reciprocating compressors (Low capacities, high r) **Assumptions:** Ideal behavior, isentropic and adiabatic

Drivers

1) Electric motors driving compressor; η_M =0.9; η_C =0.8 (compressor) Brake horsepower W_b= W/ $\eta_M \eta_C$ = 1.39 W

2) Turbine diving compressor (e.g.IGCC where need decrease P); η_T =0.8; W_b =1.562 W

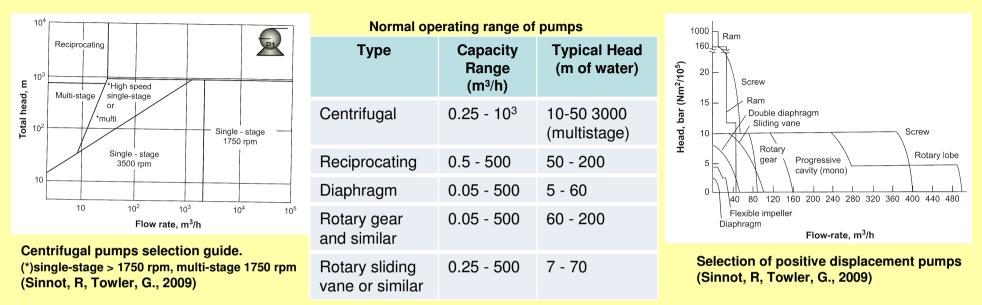
Max. Horsepower compressor = 10.000 hp = 7.5 MW Max Compression ratio $r = P_2/P_1 < 5$.

Staged compressors \rightarrow to decrease work using intercoolers in N stages

Work is minimised when compression ratios are the same $P_1/P_0 = P_2/P_1 = \dots = P_N/P_{N-1} = (P_N/P_0)^{1/N}$ Rule of thumb $\rightarrow (P_N/P_0)^{1/N} = 2.5 \rightarrow N$

$$W = \mu N R T_0 \left(\frac{\gamma}{\gamma - 1}\right) \left[\left(\frac{P_N}{P_0}\right)^{\frac{\gamma - 1}{N\gamma}} - 1 \right]_{21}$$

STEAM TURBINE


SH-25 GAS TURBINE

COMPRESSORS

SHORT CUT for PUMPS SIZING

Centrifugal pumps the most common. Assumptions: Isothermal conditions

Brake horsepower:
$$W_b = \mu \frac{(P_2 - P_1)}{\rho \eta_P \eta_M}$$

Pump: $\eta_P=0.5$ (less than $\eta_C=0.8$ because frictional problems in L); Motor: $\eta_M=0.9$

W_b << W_c → €_b << €_c in 2 orders of magnitude → Change P in pumps during heat integration in distillation columns is not much money

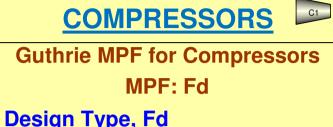
Use electrical motors not turbine as drivers in pumps

SPECIFICATIONS

Pump Type: Centrifugal **Flow / P Specifications**

Liquid Flow: 170.000 GPM Discharge P: 43.0 psi Inlet Size: 2,000 inch Discharge Size: 1.500 inch Media Temperature; 250 F **Power Specifications**

Power Source AC; 100/200Single Market Segment: General use; Paper Industry

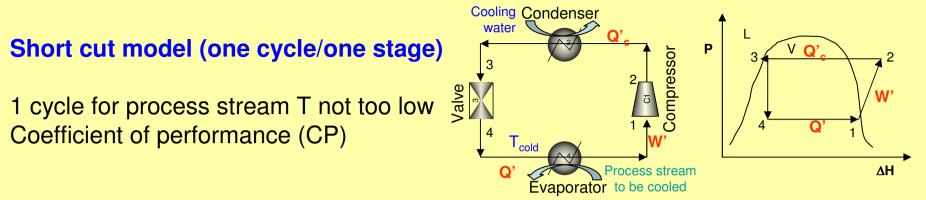

Pump Type: Centrifugal **Flow / P Specifications**

Liquid Flow:1541.003 GPM Discharge P: 507.6 psi Media Temperature: 662 F **Power** Specifications: Power Source DC Market Segment: General use; Petrochemical or Hydrocarbon; Chemical Industry.

Pump Type: Centrifugal Flow / P Specifications Liquid Flow 15400.000 GPM Discharge P: 212.0 psi Inlet Size 16,000 inch Discharge Size 16.000 inch Media T: 572 F **Power Specifications:** Power Source AC; Electric Motor Market Segment General use; Mining; Chemical Industry

Material and Pressure Factors for Centrifugal Pumps and Drivers, Compressors and Mechanical Refrigeration.

PUM	PS		PI				
Guthrie MPF for Pumps and	Guthrie MPF for Centrifugal Pumps and Drivers						
MPF: Fm.	Fo						
Material Type, Fm							
Cast iron 1.0	00						
Bronze 1.2	28						
Stainless 1.9							
Hastelloy C 2.8							
Monel 3.2							
Nickel 3.4							
Titanium 8.9	98						
Operating Limits,	<u>Fo</u>						
Max. Suction P (psig)	150	500	1000				
Max. T (⁰F)	250	550					
Fo	1.0	1.5	2.9				



Centrifugal/motor	1.00	
Reciprocating/steam	1.07	
Centrifugal/turbine	1.15	
Reciprocating/motor	1.29	
Reciprocating/gas engine	1.82	

REFRIGERATION

Guthrie MPF for Mechanical Refrigeration						
MPF: Ft						
Evaporator ⁻	<u> Femperature, Ft</u>					
278 K / 5 C	1.00					
266 K / -7 C	1.95					
255 K / -18 C	2.25					
244 K / -29 C	3.95					
233 K / -40 C	4.54					

SHORT CUT for REFRIGERATION SIZING

CP = Q/W, typically $CP \approx 4 \rightarrow Compressor W = Q/4$

For h=0.9; hcomp=0.8 \rightarrow Wb = W/0.72; Cooling duty Qc= W+Q = 5/4 Q

Short cut model (multiple stages)

Multiple stages for low T process stream Refrigerant R must satisfy

- a) $T_{cond} < T_c^R \max T_{cond} = 0.9 Tc$ (critcal component)
- b) $T_{evap} > T_{boil,R} \rightarrow P_{evap} = P_R^0 > 1$ atm. (To prevent decreasing η due to air in the system)
- c) T_{evap} and T_{cond} must be feasible for heat exchange; $\Delta T \approx 5K$

More steps \rightarrow Less energy vs. More capital investment (compressors) \rightarrow Trade-off

Rule of Thumb: One cycle for 30 K below ambient $\rightarrow N^{\circ}$ cycles = N = (300-T_{cold})/30

$$W = Q \left[\left(1 + \frac{1}{CP} \right)^N - 1 \right]; \qquad Q_c = \left[1 + \frac{1}{CP} \right]^N Q$$

3.- COST ESTIMATION OF EQUIPMENT: Base Costs for equipment units

Base Costs for Pressure Vestical Equipment TypeC_0 (\$)L_0(ft)D_0(ft) α β Vertical fabrication10004.03.00.811.0 $1 \le D \le 10$ ft; $4 \le L \le 100$ ft6904.03.00.780.9 $1 \le D \le 10$ ft; $4 \le L \le 100$ ft18010.02.00.971.4 $2 \le D \le 10$ ft; $1 \le L \le 500$ ft18010.02.00.971.4	B MF2/MF4/MF6/MF8/MF1	0
$\begin{array}{c ccccc} \mbox{Vertical fabrication} & 1000 & 4.0 & 3.0 & 0.81 & 1.0 \\ 1 \le D \le 10 \mbox{ ft; } 4 \le L \le 100 \mbox{ ft} \\ \mbox{Horizontal fabrication} & 690 & 4.0 & 3.0 & 0.78 & 0.9 \\ 1 \le D \le 10 \mbox{ ft; } 4 \le L \le 100 \mbox{ ft} \\ \mbox{Tray stacks} & 180 & 10.0 & 2.0 & 0.97 & 1.4 \\ \end{array}$		0
$\begin{array}{llllllllllllllllllllllllllllllllllll$	05 4.23/4.12/4.07/4.06/4.02	
Horizontal fabrication $1 \le D \le 10$ ft; $4 \le L \le 100$ ft6904.03.00.780.9Tray stacks18010.02.00.971.4		
1≤D ≤10 ft; 4 ≤ L ≤100 ft Tray stacks 180 10.0 2.0 0.97 1.4		
Tray stacks 180 10.0 2.0 0.97 1.4	98 3.18/3.06/3.01/2.99/2.96	
	45 1.0/1.0/1.0/1.0/1.0	
	45 1.0/1.0/1.0/1.0/1.0	
Base Costs for Process Equip	pment	
Equipment Type C_0 (\$10 ³) S_0 Range (S)	α MF2/MF4/MF6/MF8/MF	- 10
Process furnaces 100 30 100-300	0.83 2.27/2.19/2.16/2.15/2.1	3
S=Absorbed duty (10 ^e Btu/h)		
Direct fired heaters 20 5 1-40	0.77 2.23/2.15/2.13/2.12/2.1	10
S=Absorbed duty (10 ^e Btu/h)		
Heat exchanger 5 400 100-10 ⁴	0.65 3.29/3.18/3.14/3.12/3.0	09
Shell and tube, S=Area (ft ²) Heat exchanger 0.3 5.5 2-100	0.024 1.83/1.83/1.83/1.83/1.83/1.8	22
Shell and tube, $S=Area$ (ft^2)	0.024 1.05/1.05/1.05/1.05/1.05/1.0	50
Air Coolers 3 200 100-104	0.82 2.31/2.21/2.18/2.16/2.1	15
S=[calculated area (ft²)/15.5]		
Centrifugal pumps 0.39 10 10-2.10 ³	0.17 3.38/3.28/3.24/3.23/3.2	
$S = C/H \ factor \ (gpm \ x \ psi) \qquad 0.65 \qquad 2.10^3 2.10^3 - 2.10^4$	0.36 3.38/3.28/3.24/3.23/3.2	
1.5 2.10 ⁴ 2.10 ⁴ -2.10 ⁵	0.64 3.38/3.28/3.24/3.23/3.2	
Compressors2310030-104S=brake horsepower	0.77 3.11/3.01/2.97/2.96/2.9	93
September 60 200 50-3000	0.70 1.42	
S=ton refrigeration (12,000 Btu/h removed)		

[Tables 4.11-4.12; p.134 (Biegler et al., 1997) → Table 22.32; p.591-595 (Seider et al., 2010)]

3.- COST ESTIMATION OF EQUIPMENT

' modular method to preliminary design.

Updated Bare Module Cost = UF · BC · (MPF + MF -1)

```
BC
```

Williams Law: $C = BC = Co (S/So)^{\alpha}$

Non-linear behaviour of Cost, C vs., Size, S → Economy of Scale (incremental cost decrease with larger capacities

$$\mathbf{C} = \mathbf{B}\mathbf{C} = \mathbf{C}\mathbf{o} \ (\mathbf{S}/\mathbf{S}\mathbf{o})^{\mathbf{o}}$$

 $\log C = \log (Co/So)^{\alpha} + \alpha \log S$

Co, So. Parameters of Basic configuration Costs and Capacities α . Parameter < 1 \rightarrow economy of scale

Base Cost for Pressure Vessels: Vertical, horizontal, tray stack C =Co (L/Lo)^a (D/Do)^b

> Base Cost for Process Equipment C =Co (S/So) $^{\alpha}$; Range of S

MF: Module Factor, affected by BC, taking into account labor, piping instruments, accessories, etc.

MF 2 : < 200.000 \$ MF 6 : 400.000 - 600.000 \$ MF 8 : 600.000 - 800.000 \$ MF 10 : 800.000 - 1.000.000 \$

MF 4 : 200.000 - 400.000 \$

MPF): Materials and Pressure correction Factors Φ (Fd, Fm, Fp, Fo, Ft) Empirical factors that modified BC and evaluate particular instances of equipment beyond a basic configuration: Uninstalled Cost = (BC x MPF)

Fm: Construction material variation Fd: Design variation Fp: Pressure variation Fo: Operating Limits (Φ of T, P) Ft: Mechanical refrigeration factor (Φ T evaporator)

Update Factor, to account for inflation.

UF = Present Cost Index (CI actual) / Base Cost Index (CI hase)

CI: Cl	hemical Engineering Plant	Cost Index (www.che	e.com)
YEAR	CI	YEAR	CI
1957-59	100	1996	382
1968	115 (Guthrie paper)	1997	386.5
1970	126	1998	389.5
1983	316	2003	402
1993	359	2009	539.6
1995	381	2010	532.9