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The General Problem of Heat
Exchange

1





1. Introduction

The radiation of the sun in which the planet is incessantly plunged, pene-
trates the air, the earth, and the waters; its elements are divided, change
direction in every way, and, penetrating the mass of the globe, would
raise its temperature more and more, if the heat acquired were not exactly
balanced by that which escapes in rays from all points of the surface and
expands through the sky. The Analytical Theory of Heat, J. Fourier

1.1 Heat transfer

People have always understood that something flows from hot objects to
cold ones. We call that flow heat. In the eighteenth and early nineteenth
centuries, scientists imagined that all bodies contained an invisible fluid
which they called caloric. Caloric was assigned a variety of properties,
some of which proved to be inconsistent with nature (e.g., it had weight
and it could not be created nor destroyed). But its most important feature
was that it flowed from hot bodies into cold ones. It was a very useful
way to think about heat. Later we shall explain the flow of heat in terms
more satisfactory to the modern ear; however, it will seldom be wrong to
imagine caloric flowing from a hot body to a cold one.

The flow of heat is all-pervasive. It is active to some degree or another
in everything. Heat flows constantly from your bloodstream to the air
around you. The warmed air buoys off your body to warm the room you
are in. If you leave the room, some small buoyancy-driven (or convective)
motion of the air will continue because the walls can never be perfectly
isothermal. Such processes go on in all plant and animal life and in the
air around us. They occur throughout the earth, which is hot at its core
and cooled around its surface. The only conceivable domain free from
heat flow would have to be isothermal and totally isolated from any other
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4 Introduction §1.1

region. It would be “dead” in the fullest sense of the word — devoid of
any process of any kind.

The overall driving force for these heat flow processes is the cooling
(or leveling) of the thermal gradients within our universe. The heat flows
that result from the cooling of the sun are the primary processes that we
experience naturally. The conductive cooling of Earth’s center and the ra-
diative cooling of the other stars are processes of secondary importance
in our lives.

The life forms on our planet have necessarily evolved to match the
magnitude of these energy flows. But while “natural man” is in balance
with these heat flows, “technological man”1 has used his mind, his back,
and his will to harness and control energy flows that are far more intense
than those we experience naturally. To emphasize this point we suggest
that the reader make an experiment.

Experiment 1.1

Generate as much power as you can, in some way that permits you to
measure your own work output. You might lift a weight, or run your own
weight up a stairwell, against a stopwatch. Express the result in watts (W).
Perhaps you might collect the results in your class. They should generally
be less than 1 kW or even 1 horsepower (746 W). How much less might
be surprising.

Thus, when we do so small a thing as turning on a 150 W light bulb,
we are manipulating a quantity of energy substantially greater than a
human being could produce in sustained effort. The energy consumed
by an oven, toaster, or hot water heater is an order of magnitude beyond
our capacity. The energy consumed by an automobile can easily be three
orders of magnitude greater. If all the people in the United States worked
continuously like galley slaves, they could barely equal the power output
of even a single city power plant.

Our voracious appetite for energy has steadily driven the intensity
of actual heat transfer processes upward until they are far greater than
those normally involved with life forms on earth. Until the middle of the

1Some anthropologists think that the term Homo technologicus (technological man)
serves to define human beings, as apart from animals, better than the older term Homo
sapiens (man, the wise). We may not be as much wiser than the animals as we think we
are, but only we do serious sustained tool making.



§1.1 Heat transfer 5

thirteenth century, the energy we use was drawn indirectly from the sun
using comparatively gentle processes — animal power, wind and water
power, and the combustion of wood. Then population growth and defor-
estation drove the English to using coal. By the end of the seventeenth
century, England had almost completely converted to coal in place of
wood. At the turn of the eighteenth century, the first commercial steam
engines were developed, and that set the stage for enormously increased
consumption of coal. Europe and America followed England in these
developments.

The development of fossil energy sources has been a bit like Jules
Verne’s description in Around the World in Eighty Days in which, to win
a race, a crew burns the inside of a ship to power the steam engine. The
combustion of nonrenewable fossil energy sources (and, more recently,
the fission of uranium) has led to remarkably intense energy releases in
power-generating equipment. The energy transferred as heat in a nuclear
reactor is on the order of one million watts per square meter.

A complex system of heat and work transfer processes is invariably
needed to bring these concentrations of energy back down to human pro-
portions. We must understand and control the processes that divide and
diffuse intense heat flows down to the level on which we can interact with
them. To see how this works, consider a specific situation. Suppose we
live in a town where coal is processed into fuel-gas and coke. Such power
supplies used to be common, and they may return if natural gas supplies
ever dwindle. Let us list a few of the process heat transfer problems that
must be solved before we can drink a glass of iced tea.

• A variety of high-intensity heat transfer processes are involved with
combustion and chemical reaction in the gasifier unit itself.

• The gas goes through various cleanup and pipe-delivery processes
to get to our stoves. The heat transfer processes involved in these
stages are generally less intense.

• The gas is burned in the stove. Heat is transferred from the flame to
the bottom of the teakettle. While this process is small, it is intense
because boiling is a very efficient way to remove heat.

• The coke is burned in a steam power plant. The heat transfer rates
from the combustion chamber to the boiler, and from the wall of
the boiler to the water inside, are very intense.
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• The steam passes through a turbine where it is involved with many
heat transfer processes, including some condensation in the last
stages. The spent steam is then condensed in any of a variety of
heat transfer devices.

• Cooling must be provided in each stage of the electrical supply sys-
tem: the winding and bearings of the generator, the transformers,
the switches, the power lines, and the wiring in our houses.

• The ice cubes for our tea are made in an electrical refrigerator. It
involves three major heat exchange processes and several lesser
ones. The major ones are the condensation of refrigerant at room
temperature to reject heat, the absorption of heat from within the
refrigerator by evaporating the refrigerant, and the balancing heat
leakage from the room to the inside.

• Let’s drink our iced tea quickly because heat transfer from the room
to the water and from the water to the ice will first dilute, and then
warm, our tea if we linger.

A society based on power technology teems with heat transfer prob-
lems. Our aim is to learn the principles of heat transfer so we can solve
these problems and design the equipment needed to transfer thermal
energy from one substance to another. In a broad sense, all these prob-
lems resolve themselves into collecting and focusing large quantities of
energy for the use of people, and then distributing and interfacing this
energy with people in such a way that they can use it on their own puny
level.

We begin our study by recollecting how heat transfer was treated in
the study of thermodynamics and by seeing why thermodynamics is not
adequate to the task of solving heat transfer problems.

1.2 Relation of heat transfer to thermodynamics

The First Law with work equal to zero

The subject of thermodynamics, as taught in engineering programs, makes
constant reference to the heat transfer between systems. The First Law
of Thermodynamics for a closed system takes the following form on a
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Figure 1.1 The First Law of Thermodynamics for a closed system.

rate basis:

Q︸ ︷︷ ︸
positive toward

the system

= Wk︸ ︷︷ ︸
positive away

from the system

+ dU
dt︸ ︷︷ ︸

positive when
the system’s

energy increases

(1.1)

where Q is the heat transfer rate and Wk is the work transfer rate. They
may be expressed in joules per second (J/s) or watts (W). The derivative
dU/dt is the rate of change of internal thermal energy, U, with time, t.
This interaction is sketched schematically in Fig. 1.1a.

The analysis of heat transfer processes can generally be done with-
out reference to any work processes, although heat transfer might sub-
sequently be combined with work in the analysis of real systems. If pdV
work is the only work occuring, then eqn. (1.1) is

Q = p
dV
dt

+ dU
dt

(1.2a)

This equation has two well-known special cases:

Constant volume process: Q = dU
dt

=mcv
dT
dt

(1.2b)

Constant pressure process: Q = dH
dt

=mcp
dT
dt

(1.2c)

where H ≡ U + pV is the enthalpy, and cv and cp are the specific heat
capacities at constant volume and constant pressure, respectively.
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When the substance undergoing the process is incompressible (so that
V is constant for any pressure variation), the two specific heats are equal:
cv = cp ≡ c. The proper form of eqn. (1.2a) is then

Q = dU
dt

=mc
dT
dt

(1.3)

Since solids and liquids can frequently be approximated as being incom-
pressible, we shall often make use of eqn. (1.3).

If the heat transfer were reversible, then eqn. (1.2a) would become2

T
dS
dt︸ ︷︷ ︸

Qrev

= p
dV
dt︸ ︷︷ ︸

Wkrev

+dU
dt

(1.4)

That might seem to suggest thatQ can be evaluated independently for in-
clusion in either eqn. (1.1) or (1.3). However, it cannot be evaluated using
T dS, because real heat transfer processes are all irreversible and S is not
defined as a function of T in an irreversible process. The reader will recall
that engineering thermodynamics might better be named thermostatics,
because it only describes the equilibrium states on either side of irre-
versible processes.

Since the rate of heat transfer cannot be predicted using T dS, how
can it be determined? If U(t) were known, then (when Wk = 0) eqn. (1.3)
would give Q, but U(t) is seldom known a priori.

The answer is that a new set of physical principles must be introduced
to predict Q. The principles are transport laws, which are not a part of
the subject of thermodynamics. They include Fourier’s law, Newton’s law
of cooling, and the Stefan-Boltzmann law. We introduce these laws later
in the chapter. The important thing to remember is that a description
of heat transfer requires that additional principles be combined with the
First Law of Thermodynamics.

Reversible heat transfer as the temperature gradient vanishes

Consider a wall connecting two thermal reservoirs as shown in Fig. 1.2.
As long as T1 > T2, heat will flow spontaneously and irreversibly from 1
to 2. In accordance with our understanding of the Second Law of Ther-
modynamics, we expect the entropy of the universe to increase as a con-
sequence of this process. If T2 �→ T1, the process will approach being

2T = absolute temperature, S = entropy, V = volume, p = pressure, and “rev” denotes
a reversible process.
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Figure 1.2 Irreversible heat flow
between two thermal reservoirs through
an intervening wall.

quasistatic and reversible. But the rate of heat transfer will also approach
zero if there is no temperature difference to drive it. Thus all real heat
transfer processes generate entropy.

Now we come to a dilemma: If the irreversible process occurs at
steady state, the properties of the wall do not vary with time. We know
that the entropy of the wall depends on its state and must therefore be
constant. How, then, does the entropy of the universe increase? We turn
to this question next.

Entropy production

The entropy increase of the universe as the result of a process is the sum
of the entropy changes of all elements that are involved in that process.
The rate of entropy production of the universe, ṠUn, resulting from the
preceding heat transfer process through a wall is

ṠUn = Ṡres 1 + Ṡwall︸ ︷︷ ︸
= 0, since Swall

must be constant

+Ṡres 2 (1.5)

where the dots denote time derivatives (i.e., ẋ ≡ dx/dt). Since the reser-
voir temperatures are constant,

Ṡres = Q
Tres

. (1.6)
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Now Qres 1 is negative and equal in magnitude to Qres 2, so eqn. (1.5)
becomes

ṠUn =
∣∣∣∣Qres 1

∣∣∣∣
(

1
T2
− 1
T1

)
. (1.7)

The term in parentheses is positive, so ṠUn > 0. This agrees with Clau-
sius’s statement of the Second Law of Thermodynamics.

Notice an odd fact here: The rate of heat transfer, Q, and hence ṠUn,
is determined by the wall’s resistance to heat flow. Although the wall
is the agent that causes the entropy of the universe to increase, its own
entropy does not changes. Only the entropies of the reservoirs change.

1.3 Modes of heat transfer

Figure 1.3 shows an analogy that might be useful in fixing the concepts
of heat conduction, convection, and radiation as we proceed to look at
each in some detail.

Heat conduction

Fourier’s law. Joseph Fourier3 (see Fig. 1.4) published his remarkable
book Théorie Analytique de la Chaleur in 1822. In it he formulated a
very complete exposition of the theory of heat conduction.

He began his treatise by stating the empirical law that bears his name:
the heat flux,4 q (W/m2), resulting from thermal conduction is proportional
to the magnitude of the temperature gradient and opposite to it in sign. If

3Joseph Fourier lived a remarkable double life. He served as a high government
official in Napoleonic France and he was also an applied mathematician of great impor-
tance. He was with Napoleon in Egypt between 1798 and 1801, and he was subsequently
prefect of the administrative area (or “Department”) of Isère in France until Napoleon’s
first fall in 1814. During the latter period he worked on the theory of heat flow and in
1807 submitted a 234-page monograph on the subject. It was given to such luminaries
as Lagrange and Laplace for review. They found fault with his adaptation of a series
expansion suggested by Daniel Bernoulli in the eighteenth century. Fourier’s theory
of heat flow, his governing differential equation, and the now-famous “Fourier series”
solution of that equation did not emerge in print from the ensuing controversy until
1822.

4The heat flux, q, is a heat rate per unit area and can be expressed as Q/A, where A
is an appropriate area.



Figure 1.3 An analogy for the three modes of heat transfer.
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Figure 1.4 Baron Jean Baptiste Joseph Fourier (1768–1830).
(Courtesy of Appl. Mech. Rev., vol. 26, Feb. 1973.)

we call the constant of proportionality, k, then

q = −k dT
dx

(1.8)

The constant, k, is called the thermal conductivity. It obviously must have
the dimensions W/m·K, or J/m·s·K, or Btu/h·ft·◦F if eqn. (1.8) is to be
dimensionally correct.

The heat flux is a vector quantity. Equation (1.8) tells us that if temper-
ature decreases with x, q will be positive—it will flow in the x-direction.
If T increases with x, q will be negative—it will flow opposite the x-
direction. In either case, q will flow from higher temperatures to lower
temperatures. Equation (1.8) is the one-dimensional form of Fourier’s
law. We develop its three-dimensional form in Chapter 2, namely:

�q = −k∇T
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Figure 1.5 Heat conduction through gas
separating two solid walls.

Example 1.1

The front of a slab of lead (k = 35 W/m·K) is kept at 110◦C and the
back is kept at 50◦C. If the area of the slab is 0.4 m2 and it is 0.03 m
thick, compute the heat flux, q, and the heat transfer rate, Q.

Solution. For the moment, we presume that dT/dx is a constant
equal to (Tback − Tfront)/(xback − xfront); we verify this in Chapter 2.
Thus, eqn. (1.8) becomes

q = −35
(

50− 110
0.03

)
= +70,000 W/m2 = 70 kW/m2

and

Q = qA = 70(0.4) = 28 kW

In one-dimensional heat conduction problems, there is never any real
problem in deciding which way the heat should flow. It is therefore some-
times convenient to write Fourier’s law in simple scalar form:

q = k
∆T
L

(1.9)

where L is the thickness in the direction of heat flow and q and ∆T are
both written as positive quantities. When we use eqn. (1.9), we must
remember that q always flows from high to low temperatures.

Thermal conductivity values. It will help if we first consider how con-
duction occurs in, for example, a gas. We know that the molecular ve-
locity depends on temperature. Consider conduction from a hot wall to
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a cold one in a situation in which gravity can be ignored, as shown in
Fig. 1.5. The molecules near the hot wall collide with it and are agitated
by the molecules of the wall. They leave with generally higher speed and
collide with their neighbors to the right, increasing the speed of those
neighbors. This process continues until the molecules on the right pass
their kinetic energy to those in the cool wall. Within solids, comparable
processes occur as the molecules vibrate within their lattice structure
and as the lattice vibrates as a whole. This sort of process also occurs,
to some extent, in the electron “gas” that moves through the solid. The
processes are more efficient in solids than they are in gases. Notice that

−dT
dx

= q
k

∝ 1
k︸ ︷︷ ︸

since, in steady
conduction, q is

constant

(1.10)

Thus solids, with generally higher thermal conductivities than gases,
yield smaller temperature gradients for a given heat flux. In a gas, by
the way, k is proportional to molecular speed and molar specific heat,
and inversely proportional to the cross-sectional area of molecules.

This book deals almost exclusively with S.I. units, or Système Interna-
tional d’Unités. Since much reference material will continue to be avail-
able in English units, we should have at hand a conversion factor for
thermal conductivity:

1 = J
0.0009478 Btu

· h
3600 s

· ft
0.3048 m

· 1.8◦F
K

Thus the conversion factor from W/m·K to its English equivalent, Btu/h·
ft·◦F, is

1 = 1.731
W/m·K

Btu/h·ft·◦F (1.11)

Consider, for example, copper—the common substance with the highest
conductivity at ordinary temperature:

kCu at room temp = (383 W/m·K)
/

1.731
W/m·K

Btu/h·ft·◦F = 221 Btu/h·ft·◦F
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The range of thermal conductivities is enormous. As we see from
Fig. 1.6, k varies by a factor of about 105 between gases and diamond at
room temperature. This variation can be increased to about 107 if we in-
clude the effective conductivity of various cryogenic “superinsulations.”
(These involve powders, fibers, or multilayered materials that have been
evacuated of all air.) The reader should study and remember the order
of magnitude of the thermal conductivities of different types of materi-
als. This will be a help in avoiding mistakes in future computations, and
it will be a help in making assumptions during problem solving. Actual
numerical values of the thermal conductivity are given in Appendix A
(which is a broad listing of many of the physical properties you might
need in this course) and in Figs. 2.2 and 2.3.

Example 1.2

A copper slab (k = 372 W/m·K) is 3 mm thick. It is protected from
corrosion by a 2-mm-thick layers of stainless steel (k = 17 W/m·K) on
both sides. The temperature is 400◦C on one side of this composite
wall and 100◦C on the other. Find the temperature distribution in the
copper slab and the heat conduction through the wall (see Fig. 1.7).

Solution. If we recall Fig. 1.5 and eqn. (1.10), it should be clear that
the temperature drop will take place almost entirely in the stainless
steel, where k is less than 1/20 of k in the copper. Thus, the cop-
per will be virtually isothermal at the average temperature of (400+
100)/2 = 250◦C. Furthermore, the heat conduction can be estimated
in a 4 mm slab of stainless steel as though the copper were not even
there. With the help of Fourier’s law in the form of eqn. (1.8), we get

q = −kdT
dx

� 17 W/m·K ·
(

400− 100
0.004

)
K/m = 1275 kW/m2

The accuracy of this rough calculation can be improved by con-
sidering the copper. To do this we first solve for ∆Ts.s. and ∆TCu (see
Fig. 1.7). Conservation of energy requires that the steady heat flux
through all three slabs must be the same. Therefore,

q =
(
k
∆T
L

)
s.s.
=

(
k
∆T
L

)
Cu
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Figure 1.7 Temperature drop through a
copper wall protected by stainless steel
(Example 1.2).

but

(400− 100)◦C ≡ ∆TCu + 2∆Ts.s.

= ∆TCu

[
1+ 2

(k/L)Cu

(k/L)s.s.

]
= (30/18)∆TCu

Solving this, we obtain ∆TCu = 9.94 K. So ∆Ts.s. = (300 − 9.94)/2 =
145 K. It follows that TCu, left = 255◦C and TCu, right = 245◦C.

The heat flux can be obtained by applying Fourier’s law to any of
the three layers. We consider either stainless steel layer and get

q = 17
W

m·K
145 K

0.002 m
= 1233 kW/m2

Thus our initial approximation was accurate within a few percent.

One-dimensional heat diffusion equation. In Example 1.2 we had to
deal with a major problem that arises in heat conduction problems. The
problem is that Fourier’s law involves two dependent variables, T and
q. To eliminate q and first solve for T , we introduced the First Law of
Thermodynamics implicitly: Conservation of energy required that q was
the same in each metallic slab.

The elimination of q from Fourier’s law must now be done in a more
general way. Consider a one-dimensional element, as shown in Fig. 1.8.
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Figure 1.8 One-dimensional heat conduction through a differ-
ential element.

From Fourier’s law applied at each side of the element, as shown, the net
heat conduction out of the element during general unsteady heat flow is

qnetA = Qnet = −kA ∂2T
∂x2

δx (1.12)

To eliminate the heat loss Qnet in favor of T , we use the general First
Law statement for closed, nonworking systems, eqn. (1.3):

−Qnet = dU
dt

= ρcA
d(T − Tref)

dt
δx = ρcA

dT
dt

δx (1.13)

where ρ is the density of the slab and c is its specific heat capacity.5

Equations (1.12) and (1.13) can be combined to give

∂2T
∂x2

= ρc
k
∂T
∂t

≡ 1
α
∂T
∂t

(1.14)

5The reader might wonder if c should be cp or cv . This is a strictly incompressible
equation so cp = cv = c. The compressible equation involves additional terms, and
this particular term emerges with cp in it in the conventional rearrangements of terms.
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Figure 1.9 The convective cooling of a heated body.

This is the one-dimensional heat diffusion equation. Its importance is
this: By combining the First Law with Fourier’s law, we have eliminated
the unknown Q and obtained a differential equation that can be solved
for the temperature distribution, T(x, t). It is the primary equation upon
which all of heat conduction theory is based.

The heat diffusion equation includes a new property which is as im-
portant to transient heat conduction as k is to steady-state conduction.
This is the thermal diffusivity, α:

α ≡ k
ρc

J
m·s·K

m3

kg
kg·K

J
= α m2/s (or ft2/hr).

The thermal diffusivity is a measure of how quickly a material can carry
heat away from a hot source. Since material does not just transmit heat
but must be warmed by it as well, α involves both the conductivity, k,
and the volumetric heat capacity, ρc.

Heat Convection

The physical process. Consider a typical convective cooling situation.
Cool gas flows past a warm body, as shown in Fig. 1.9. The fluid imme-
diately adjacent to the body forms a thin slowed-down region called a
boundary layer. Heat is conducted into this layer, which sweeps it away
and, farther downstream, mixes it into the stream. We call such processes
of carrying heat away by a moving fluid convection.

In 1701, Isaac Newton considered the convective process and sug-
gested that the cooling would be such that

dTbody

dt
∝ Tbody − T∞ (1.15)

where T∞ is the temperature of the oncoming fluid. This statement sug-
gests that energy is flowing from the body. But if the energy of the body
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is constantly replenished, the body temperature need not change. Then
with the help of eqn. (1.3) we get, from eqn. (1.15) (see Problem 1.2),

Q ∝ Tbody − T∞ (1.16)

This equation can be rephrased in terms of q = Q/A as

q = h
(
Tbody − T∞

)
(1.17)

This is the steady-state form of Newton’s law of cooling, as it is usually
quoted, although Newton never wrote such an expression.

The constant h is the film coefficient or heat transfer coefficient. The
bar over h indicates that it is an average over the surface of the body.
Without the bar, h denotes the “local” value of the heat transfer coef-
ficient at a point on the surface. The units of h and h are W/m2K or
J/s·m2·K. The conversion factor for English units is:

1 = 0.0009478 Btu
J

· K
1.8◦F

· 3600 s
h

· (0.3048 m)2

ft2

or

1 = 0.1761
Btu/h·ft2·◦F

W/m2K
(1.18)

It turns out that Newton oversimplified the process of convection
when he made his conjecture. Heat convection is complicated and h
can depend on the temperature difference Tbody − T∞ ≡ ∆T . In Chap-
ter 6 we find that h really is independent of ∆T in situations in which
fluid is forced past a body and ∆T is not too large. This is called forced
convection.

When fluid buoys up from a hot body or down from a cold one, h
varies as some weak power of ∆T—typically as ∆T 1/4 or ∆T 1/3. This is
called free or natural convection. If the body is hot enough to boil a liquid
surrounding it, h will typically vary as ∆T 2.

For the moment, we restrict consideration to situations in which New-
ton’s law is either true or at least a reasonable approximation to real
behavior.

We should have some idea of how large h might be in a given situ-
ation. Table 1.1 provides some illustrative values of h that have been
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Table 1.1 Some illustrative values of convective heat transfer
coefficients

Situation h, W/m2K

Natural convection in gases
• 0.3 m vertical wall in air, ∆T = 30◦C 4.33

Natural convection in liquids
• 40 mm O.D. horizontal pipe in water, ∆T = 30◦C 570
• 0.25 mm diameter wire in methanol, ∆T = 50◦C 4,000

Forced convection of gases
• Air at 30 m/s over a 1 m flat plate, ∆T = 70◦C 80

Forced convection of liquids
• Water at 2 m/s over a 60 mm plate, ∆T = 15◦C 590
• Aniline-alcohol mixture at 3 m/s in a 25 mm I.D. tube, ∆T = 80◦C 2,600
• Liquid sodium at 5 m/s in a 13 mm I.D. tube at 370◦C 75,000

Boiling water
• During film boiling at 1 atm 300
• In a tea kettle 4,000
• At a peak pool-boiling heat flux, 1 atm 40,000
• At a peak flow-boiling heat flux, 1 atm 100,000
• At approximate maximum convective-boiling heat flux, under

optimal conditions 106

Condensation
• In a typical horizontal cold-water-tube steam condenser 15,000
• Same, but condensing benzene 1,700
• Dropwise condensation of water at 1 atm 160,000

observed or calculated for different situations. They are only illustrative
and should not be used in calculations because the situations for which
they apply have not been fully described. Most of the values in the ta-
ble could be changed a great deal by varying quantities (such as surface
roughness or geometry) that have not been specified. The determination
of h or h is a fairly complicated task and one that will receive a great
deal of our attention. Notice, too, that h can change dramatically from
one situation to the next. Reasonable values of h range over about six
orders of magnitude.
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Example 1.3

The heat flux, q, is 6000 W/m2 at the surface of an electrical heater.
The heater temperature is 120◦C when it is cooled by air at 70◦C.
What is the average convective heat transfer coefficient, h? What will
the heater temperature be if the power is reduced so that q is 2000
W/m2?

Solution.

h = q
∆T

= 6000
120− 70

= 120 W/m2K

If the heat flux is reduced, h should remain unchanged during forced
convection. Thus

∆T = Theater − 70◦C = q
/
h = 2000 W/m2

120 W/m2K
= 16.67 K

so Theater = 70+ 16.67 = 86.67◦C

Lumped-capacity solution. We now wish to deal with a very simple but
extremely important, kind of convective heat transfer problem. The prob-
lem is that of predicting the transient cooling of a convectively cooled
object, such as is shown in Fig. 1.9. We begin with our now-familiar First
law statement, eqn. (1.3):

Q︸ ︷︷ ︸
−hA(T − T∞)

= dU
dt︸ ︷︷ ︸

d
dt

[ρcV(T − Tref)]

(1.19)

where A and V are the surface area and volume of the body, T is the
temperature of the body, T = T(t), and Tref is the arbitrary temperature
at which U is defined equal to zero. Thus6

d(T − T∞)
dt

= − hA
ρcV

(T − T∞) (1.20)

6Is it clear why (T−Tref) has been changed to (T−T∞) under the derivative? Remem-
ber that the derivative of a constant (like Tref or T∞) is zero. We can therefore introduce
(T − T∞) without invalidating the equation, and get the same dependent variable on
both sides of the equation.
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Figure 1.10 The cooling of a body for which the Biot number,
hL/kb, is small.

The general solution to this equation is

ln(T − T∞) = − t
(ρcV

/
hA)

+ C (1.21)

The group ρcV
/
hA is the time constant, T . If the initial temperature is

T(t = 0) ≡ Ti, then C = ln(Ti − T∞), and the cooling of the body is given
by

T − T∞
Ti − T∞

= e−t/T (1.22)

All of the physical parameters in the problem have now been “lumped”
into the time constant. It represents the time required for a body to cool
to 1/e, or 37% of its initial temperature difference above (or below) T∞.



24 Introduction §1.3

The ratio t/T can also be interpreted as

t
T
= hAt (J/◦C)
ρcV (J/◦C)

= capacity for convection from surface
heat capacity of the body

(1.23)

Notice that the thermal conductivity is missing from eqns. (1.22) and
(1.23). The reason is that we have assumed that the temperature of the
body is nearly uniform, and this means that internal conduction is not
important. We see in Fig. 1.10 that, if L

/
(kb/h) 1, the temperature of

the body, Tb, is almost constant within the body at any time. Thus

hL
kb

 1 implies that Tb(x, t) � T(t) � Tsurface

and the thermal conductivity, kb, becomes irrelevant to the cooling pro-
cess. This condition must be satisfied or the lumped-capacity solution
will not be accurate.

We call the group hL
/
kb the Biot number7, Bi. If Bi were large, of

course, the situation would be reversed, as shown in Fig. 1.11. In this
case Bi = hL/kb � 1 and the convection process offers little resistance
to heat transfer. We could solve the heat diffusion equation

∂2T
∂x2

= 1
α
∂T
∂t

subject to the simple boundary condition T(x, t) = T∞ when x = L, to
determine the temperature in the body and its rate of cooling in this case.
The Biot number will therefore be the basis for determining what sort of
problem we have to solve.

To calculate the rate of entropy production in a lumped-capacity sys-
tem, we note that the entropy change of the universe is the sum of the
entropy decrease of the body and the more rapid entropy increase of
the surroundings. The source of irreversibility is heat flow through the
boundary layer. Accordingly, we write the time rate of change of entropy
of the universe, dSUn/dt ≡ ṠUn, as

ṠUn = Ṡb + Ṡsurroundings = −Qrev

Tb
+ Qrev

T∞
7Pronounced Bee-oh. J.B. Biot, although younger than Fourier, worked on the anal-

ysis of heat conduction even earlier—in 1802 or 1803. He grappled with the problem
of including external convection in heat conduction analyses in 1804 but could not see
how to do it. Fourier read Biot’s work and by 1807 had determined how to analyze the
problem. (Later we encounter a similar dimensionless group called the Nusselt num-
ber, Nu = hL/kfluid. The latter relates only to the boundary layer and not to the body
being cooled. We deal with it extensively in the study of convection.)
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Figure 1.11 The cooling of a body for which the Biot number,
hL/kb, is large.

or

ṠUn = −ρcV dTb
dt

(
1
T∞

− 1
Tb

)
.

We can multiply both sides of this equation by dt and integrate the right-
hand side from Tb(t = 0) ≡ Tb0 to Tb at the time of interest:

∆S = −ρcV
∫ Tb

Tb0

(
1
T∞

− 1
Tb

)
dTb. (1.24)

Equation 1.24 will give a positive∆S whether Tb > T∞ or Tb < T∞ because
the sign of dTb will always opposed the sign of the integrand.

Example 1.4

A thermocouple bead is largely solder, 1 mm in diameter. It is initially
at room temperature and is suddenly placed in a 200◦C gas flow. The
heat transfer coefficient h is 250 W/m2K, and the effective values
of k, ρ, and c are 45 W/m·K, 9300 kg/m3, and c = 0.18 kJ/kg·K,
respectively. Evaluate the response of the thermocouple.
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Solution. The time constant, T , is

T = ρcV
hA

= ρc
h

πD3/6
πD2

= ρcD
6h

= (9300)(0.18)(0.001)
6(250)

kg
m3

kJ
kg·K m

m2·K
W

1000 W
kJ/s

= 1.116 s

Therefore, eqn. (1.22) becomes

T − 200◦C
(20− 200)◦C

= e−t/1.116 or T = 200− 180 e−t/1.116

This result is plotted in Fig. 1.12, where we see that, for all practical
purposes, this thermocouple catches up with the gas stream in less
than 5 s. Indeed, it should be apparent that any such system will
come within 95% of the signal in three time constants. Notice, too,
that if the response could continue at its initial rate, the thermocouple
would reach the signal temperature in one time constant.

This calculation is based entirely on the assumption that Bi  1
for the thermocouple. We must check that assumption:

Bi ≡ hL
k
= (250 W/m2K)(0.001 m)/2

45 W/m·K = 0.00278

This is very small indeed, so the assumption is valid.

Experiment 1.2

Invent and carry out a simple procedure for evaluating the time con-
stant of a fever thermometer in your mouth.

Radiation

Heat transfer by thermal radiation. All bodies constantly emit energy
by a process of electromagnetic radiation. The intensity of such energy
flux depends upon the temperature of the body and the nature of its
surface. Most of the heat that reaches you when you sit in front of a fire
is radiant energy. Radiant energy browns your toast in an electric toaster
and it warms you when you walk in the sun.
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Figure 1.12 Thermocouple response to a hot gas flow.

Objects that are cooler than the fire, the toaster, or the sun emit much
less energy because the energy emission varies as the fourth power of ab-
solute temperature. Very often, the emission of energy, or radiant heat
transfer, from cooler bodies can be neglected in comparison with con-
vection and conduction. But heat transfer processes that occur at high
temperature, or with conduction or convection suppressed by evacuated
insulations, usually involve a significant fraction of radiation.

Experiment 1.3

Open the freezer door to your refrigerator. Put your face near it, but
stay far enough away to avoid the downwash of cooled air. This way you
cannot be cooled by convection and, because the air between you and the
freezer is a fine insulator, you cannot be cooled by conduction. Still your
face will feel cooler. The reason is that you radiate heat directly into the
cold region and it radiates very little heat to you. Consequently, your
face cools perceptibly.
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Table 1.2 Forms of the electromagnetic wave spectrum

Characterization Wavelength, λ

Cosmic rays < 0.3 pm

Gamma rays 0.3–100 pm

X rays 0.01–30 nm

Ultraviolet light 3–400 nm

Visible light 0.4–0.7 µm

Near infrared radiation 0.7–30 µm

Far infrared radiation 30–1000 µm




Thermal Radiation
0.1–1000 µm

Millimeter waves 1–10 mm

Microwaves 10–300 mm

Shortwave radio & TV 300 mm–100 m

Longwave radio 100 m–30 km

The electromagnetic spectrum. Thermal radiation occurs in a range
of the electromagnetic spectrum of energy emission. Accordingly, it ex-
hibits the same wavelike properties as light or radio waves. Each quan-
tum of radiant energy has a wavelength, λ, and a frequency, ν , associated
with it.

The full electromagnetic spectrum includes an enormous range of
energy-bearing waves, of which heat is only a small part. Table 1.2 lists
the various forms over a range of wavelengths that spans 24 orders of
magnitude. Only the tiniest “window” exists in this spectrum through
which we can see the world around us. Heat radiation, whose main com-
ponent is usually the spectrum of infrared radiation, passes through the
much larger window—about three orders of magnitude in λ or ν .

Black bodies. The model for the perfect thermal radiator is a so-called
black body. This is a body which absorbs all energy that reaches it and
reflects nothing. The term can be a little confusing, since such bodies
emit energy. Thus, if we possessed infrared vision, a black body would
glow with “color” appropriate to its temperature. of course, perfect ra-
diators are “black” in the sense that they absorb all visible light (and all
other radiation) that reaches them.

It is necessary to have an experimental method for making a perfectly
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Figure 1.13 Cross section of a spherical hohlraum. The hole
has the attributes of a nearly perfect thermal black body.

black body. The conventional device for approaching this ideal is called
by the German term hohlraum, which literally means “hollow space”.
Figure 1.13 shows how a hohlraum is arranged. It is simply a device that
traps all the energy that reaches the aperture.

What are the important features of a thermally black body? First
consider a distinction between heat and infrared radiation. Infrared ra-
diation refers to a particular range of wavelengths, while heat refers to
the whole range of radiant energy flowing from one body to another.
Suppose that a radiant heat flux, q, falls upon a translucent plate that
is not black, as shown in Fig. 1.14. A fraction, α, of the total incident
energy, called the absorptance, is absorbed in the body; a fraction, ρ,
called the reflectance, is reflected from it; and a fraction, τ , called the
transmittance, passes through. Thus

1 = α+ ρ + τ (1.25)

This relation can also be written for the energy carried by each wave-
length in the distribution of wavelengths that makes up heat from a
source at any temperature:

1 = αλ + ρλ + τλ (1.26)

All radiant energy incident on a black body is absorbed, so that αb or
αλb = 1 and ρb = τb = 0. Furthermore, the energy emitted from a
black body reaches a theoretical maximum, which is given by the Stefan-
Boltzmann law. We look at this next.



30 Introduction §1.3

Figure 1.14 The distribution of energy
incident on a translucent slab.

The Stefan-Boltzmann law. The flux of energy radiating from a body
is commonly designated e(T) W/m2. The symbol eλ(λ, T ) designates the
distribution function of radiative flux in λ, or themonochromatic emissive
power:

eλ(λ, T) = de(λ, T)
dλ

or e(λ, T) =
∫ λ

0
eλ(λ, T)dλ (1.27)

Thus

e(T) ≡ E(∞, T ) =
∫∞

0
eλ(λ, T)dλ

The dependence of e(T) on T for a black body was established experi-
mentally by Stefan in 1879 and explained by Boltzmann on the basis of
thermodynamics arguments in 1884. The Stefan-Boltzmann law is

eb(T) = σT 4 (1.28)

where the Stefan-Boltzmann constant, σ , is 5.670400 × 10−8 W/m2·K4

or 1.714× 10−9 Btu/hr·ft2·◦R4, and T is the absolute temperature.

eλ vs. λ. Nature requires that, at a given temperature, a body will emit
a unique distribution of energy in wavelength. Thus, when you heat a
poker in the fire, it first glows a dull red—emitting most of its energy
at long wavelengths and just a little bit in the visible regime. When it is
white-hot, the energy distribution has been both greatly increased and
shifted toward the shorter-wavelength visible range. At each tempera-
ture, a black body yields the highest value of eλ that a body can attain.
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Figure 1.15 Emissive power of a black
body at several temperatures—predicted
and observed.

The very accurate measurements of the black-body energy spectrum
by Lummer and Pringsheim (1899) are shown in Fig. 1.15. The locus of
maxima of the curves is also plotted. It obeys a relation called Wein’s
law:

(λT)eλ=max = 2898 µm·K (1.29)

About three-fourths of the radiant energy of a black body lies to the right
of this line in Fig. 1.15. Notice that, while the locus of maxima leans
toward the visible range at higher temperatures, only a small fraction of
the radiation is visible even at the highest temperature.

Predicting how the monochromatic emissive power of a black body
depends on λ was an increasingly serious problem at the close of the
nineteenth century. The prediction was a keystone of the most profound
scientific revolution the world has seen. In 1901, Max Planck made the
prediction, and his work included the initial formulation of quantum me-
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chanics. He found that

eλb =
2πhc2

o
λ5 [exp(hco/kBTλ)− 1]

(1.30)

where co is the speed of light, 2.99792458× 108 m/s; h is Planck’s con-
stant, 6.62606876×10−34 J·s; and kB is Boltzmann’s constant, 1.3806503×
10−23 J/K.

Radiant heat exchange. Suppose that a heated object (1 in Fig. 1.16)
radiates to some other object (2). Then if both objects are thermally
black, the net heat transferred from object 1 to object 2, Qnet, is the
difference between Q1−2

Qnet = A1 [e1(T)− e2(T)] = σA1

(
T 4

1 − T 4
2

)
(1.31)

If the first object “sees” other objects in addition to object 2, as indicated
in Fig. 1.16, then a view factor (sometimes called an configuration factor
or a shape factor ), F1−2, must be included in eqn. (1.31):

Qnet = F1−2σA1

(
T 4

1 − T 4
2

)
(1.32)

where F1−2 is the fraction of energy leaving object 1 that is intercepted
by object 2. Finally, if the bodies are not black, then the view factor,
F1−2, must be replaced by a new transfer factor, F1−2, which depends
on surface properties of the various objects as well as the geometrical
“view”.

Example 1.5

A black thermocouple measures the temperature in a chamber with
black walls. If the air around the thermocouple is at 20◦C, the walls
are at 100◦C, and the heat transfer coefficient between the thermocou-
ple and the air is 15 W/m2K, what temperature will the thermocouple
read?

Solution. The heat convected away from the thermocouple by the
air must exactly balance that radiated to it by the hot walls if the
system is steady. Furthermore, F1−2 is unity since the thermocouple
is enclosed:

hA(Ttc − Tair) = σA
(
T 4

wall − T 4
tc

)
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Figure 1.16 The net radiant heat transfer from one object to
another.

or

15(Ttc − 20) W/m2 = 5.6697× 10−8
[

3734 − (Ttc + 273)4
]

W/m2

Trial-and-error solution of this equation yields Ttc = 51◦C.

Radiation shielding. The preceding example points out an important
practical problem than can be solved with radiation shielding. The idea is
as follows: If we want to measure the true air temperature, we can place a
thin foil casing, or shield, around the thermocouple. The casing is shaped
to obstruct the thermocouple’s “view” of the room but to permit the free
flow of the air around the thermocouple. Then the casing (or shield) will
be closer to 50◦C than to 100◦C, and the thermocouple will be influenced
by this much cooler radiator. if the shield is highly reflecting on the
outside, it will assume a temperature still closer to that of the air and the
error will be still less. Multiple layers of the shielding can further reduce
the error.

Radiation shielding can take many forms and serve many purposes.
it is an important element in superinsulations. A glass firescreen in a
fireplace serves as a radiation shield because it is largely opaque to ra-
diation. it absorbs energy and reradiates (ineffectively) at a temperature
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much lower than that of the fire.

Example 1.6

A crucible of molten metal at 1800◦C is placed on the foundry floor.
The foundryman covers it with a metal sheet to reduce heat loss to
the room. If the transfer factor, F , between the melt and the sheet is
0.4, and that between the top of the sheet and the room is 0.8, how
much will the heat loss to the room be reduced by the sheet if the
transfer factor between the uncovered melt and the room had been
0.8?

Solution. First find the sheet temperature by equating the heat
transfer from the melt to the sheet to that from the sheet to the room:

q = (0.4)σ
[
(1800+ 273)4 − T 4

sheet

]
= (0.8)σ

[
T 4

sheet − (20+ 273)4
]

This gives Tsheet = 1575 K, so

qwith sheet

qwithout sheet
= 0.8σ(15754 − 2934)

0.8σ(20734 − 2934)
= 0.333

The shield therefore reduces the heat loss by 66.7%.

Experiment 1.4

Find a small open flame that produces a fair amount of soot. A candle,
kerosene lamp, or a cutting torch with a rich mixture should work well.
A clean blue flame will not work well because such gases do not radiate
much heat. First, place your finger in a position about 1 to 2 cm to one
side of the flame, where it becomes uncomfortably hot. Now take a piece
of fine mesh screen and dip it in some soapy water, which will fill up the
holes. Put it between your finger and the flame. You will see that your
finger is protected from the heating until the water evaporates.

Water is relatively transparent to light. What does this experiment
show you about the transmittance of water to infrared wavelengths?
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1.4 A look ahead

What we have done up to this point has been no more than to reveal the
tip of the iceberg. The basic mechanisms of heat transfer have been ex-
plained and some quantitative relations have been presented. However,
this information will barely get you started when you are faced with a real
heat transfer problem. Three tasks, in particular, must be completed to
solve actual problems:

• The heat diffusion equation must be solved subject to appropriate
boundary conditions if the problem involves heat conduction of any
complexity.

• The convective heat transfer coefficient, h, must be determined if
convection is important in a problem.

• The factor F1−2 or F1−2 must be determined to calculate radiative
heat transfer.

Any of these determinations can involve a great deal of complication,
and most of the chapters that lie ahead are devoted to these three basic
problems.

Before becoming engrossed in these three questions, we shall first
look at the archetypical applied problem of heat transfer–namely, the
design of a heat exchanger. Chapter 2 sets up the elementary analytical
apparatus that is needed for this, and Chapter 3 shows how to do such
design if h is already known. This will make it easier to see the impor-
tance of undertaking the three basic problems in subsequent parts of the
book.

1.5 Problems

We have noted that this book is set down almost exclusively in S.I. units.
The student who has problems with dimensional conversion will find
Appendix B helpful. The only use of English units appears in some of the
problems as the end of each chapter. A few such problems are included
to provide experience in converting back into English units, since such
units will undoubtedly persist in this country for many more years.

Another matter often leads to some discussion between students and
teachers in heat transfer courses. That is the question of whether a prob-
lem is “theoretical” or “practical”. Quite often the student is inclined to
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view as “theoretical” a problem that does not involve numbers or that
requires the development of algebraic results.

The problems assigned in this book are all intended to be useful in
that they do one or more of five things:

1. They involve a calculation of a type that actually arises in practice
(e.g., Problems 1.1, 1.3, 1.8 to 1.18, and 1.21 through 1.25).

2. They illustrate a physical principle (e.g., Problems 1.2, 1.4 to 1.7,
1.9, 1.20, 1.32, and 1.39). These are probably closest to having a
“theoretical” objective.

3. They ask you to use methods developed in the text to develop other
results that would be needed in certain applied problems (e.g., Prob-
lems 1.10, 1.16, 1.17, and 1.21). Such problems are usually the most
difficult and the most valuable to you.

4. They anticipate development that will appear in subsequent chap-
ters (e.g., Problems 1.16, 1.20, 1.40, and 1.41).

5. They require that you develop your ability to handle numerical and
algebraic computation effectively. (This is the case with most of the
problems in Chapter 1, but it is especially true of Problems 1.6 to
1.9, 1.15, and 1.17).

Partial numerical answers to some of the problems follow them in
brackets. Tables of physical property data useful in solving the problems
are given in Appendix A.

Actually, we wish to look at the theory, analysis, and practice of heat
transfer—all three—according to Webster’s definitions:

Theory: “a systematic statement of principles; a formulation of apparent
relationships or underlying principles of certain observed phenom-
ena.”

Analysis: “the solving of problems by the means of equations; the break-
ing up of any whole into its parts so as to find out their nature,
function, relationship, etc.”

Practice: “the doing of something as an application of knowledge.”
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Problems

1.1 A composite wall consists of alternate layers of fir (5 cm thick),
aluminum (1 cm thick), lead (1 cm thick), and corkboard (6 cm
thick). The temperature is 60◦C on the outside of the for and
10◦C on the outside of the corkboard. Plot the temperature gra-
dient through the wall. Does the temperature profile suggest
any simplifying assumptions that might be made in subsequent
analysis of the wall?

1.2 Verify eqn. (1.15).

1.3 q = 5000 W/m2 in a 1 cm slab and T = 140◦C on the cold side.
Tabulate the temperature drop through the slab if it is made of

• Silver

• Aluminum

• Mild steel (0.5 % carbon)

• Ice

• Spruce

• Insulation (85 % magnesia)

• Silica aerogel

Indicate which situations would be unreasonable and why.

1.4 Explain in words why the heat diffusion equation, eqn. (1.13),
shows that in transient conduction the temperature depends
on the thermal diffusivity, α, but we can solve steady conduc-
tion problems using just k (as in Example 1.1).

1.5 A 1 m rod of pure copper 1 cm2 in cross section connects a
200◦C thermal reservoir with a 0◦C thermal reservoir. The sys-
tem has already reached steady state. What are the rates of
change of entropy of (a) the first reservoir, (b) the second reser-
voir, (c) the rod, and (d) the whole universe, as a result of the
process? Explain whether or not your answer satisfies the Sec-
ond Law of Thermodynamics. [(d): +0.0120 W/K.]

1.6 Two thermal energy reservoirs at temperatures of 27◦C and
−43◦C, respectively, are separated by a slab of material 10 cm
thick and 930 cm2 in cross-sectional area. The slab has a ther-
mal conductivity of 0.14 W/m·K. The system is operating at
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steady-state conditions. what are the rates of change of entropy
of (a) the higher temperature reservoir, (b) the lower tempera-
ture reservoir, (c) the slab, and (d) the whole universe as a result
of this process? (e) Does your answer satisfy the Second Law
of Thermodynamics?

1.7 (a) If the thermal energy reservoirs in Problem 1.6 are suddenly
replaced with adiabatic walls, determine the final equilibrium
temperature of the slab. (b) what is the entropy change for the
slab for this process? (c) Does your answer satisfy the Second
Law of Thermodynamics in this instance? Explain. The density
of the slab is 26 lb/ft3 and the specific heat is 0.65 Btu/lb·◦F.
[(b): 30.81 J/K].

1.8 A copper sphere 2.5 cm in diameter has a uniform temperature
of 40◦C. The sphere is suspended is a slow-moving air stream
at 0◦C. The air stream produces a convection heat transfer coef-
ficient of 15 W/m2K. Radiation can be neglected. since copper
is highly conductive, temperature gradients in the sphere will
smooth out rapidly, and its temperature at any instant during
the cooling process can be taken as uniform (i.e., Bi  1). Write
the instantaneous energy balance between the sphere and the
surrounding air. Solve this equation and plot the resulting tem-
peratures as a function of time between 40◦C and 0◦C.

1.9 Determine the total heat transfer in Problem 1.8 as the sphere
cools from 40◦C to 0◦C. Plot the net entropy increase result-
ing from the cooling process above, ∆S vs. T (K). [Total heat
transfer = 1123 J.]

1.10 A truncated cone 30 cm high is constructed of Portland cement.
The diameter at the top is 15 cm and at the bottom is 7.5 cm.
The lower surface is maintained at 6◦C and the top at 40◦C.
The other surface is insulated. Assume one-dimensional heat
transfer and calculate the rate of heat transfer in watts from top
to bottom. To do this, note that the heat transfer, Q, must be
the same at every cross section. Write Fourier’s law locally, and
integrate it from top to bottom to get a relation between this
unknown Q and the known end temperatures. [Q = −1.70 W.]

1.11 A hot water heater contains 100 kg of water at 75◦C in a 20◦C
room. Its surface area is 1.3 m2. Select an insulating material,
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and specify its thickness, to keep the water from cooling more
than 3◦C/h. (Notice that this problem will be greatly simplified
if the temperature drop in the steel casing and the temperature
drop in the convective boundary layers are negligible. Can you
make such assumptions? Explain.)

Figure 1.17 Configuration for
Problem 1.12

1.12 What is the temperature at the left-hand wall shown in Fig. 1.17.
Both walls are thin, very large in extent, highly conducting, and
thermally black. [Tright = 42.5◦C.]

1.13 Develop S.I. to English conversion factors for:

• The thermal diffusivity, α
• The heat flux, q
• The density, ρ
• The Stefan-Boltzmann constant, σ
• The view factor, F1−2

• The molar entropy

• The specific heat per unit mass, c

In each case, begin with basic dimension J, m, kg, s, ◦C, and
check your answers against Appendix B if possible.

1.14 Three infinite, parallel, black, opaque plates transfer heat by
radiation, as shown in Fig. 1.18. Find T2.

1.15 Four infinite, parallel, black, opaque plates transfer heat by ra-
diation, as shown in Fig. 1.19. Find T2 and T3. [T2 = 75.53◦C.]

1.16 Two large, black, horizontal plates are spaced a distance L from
one another. The top one is warm at a controllable tempera-
ture, Th, and the bottom one is cool at a specified temperature,
Tc . A gas separates them. The gas is stationary because it is
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Figure 1.18 Configuration for
Problem 1.14

warm on the top and cold on the bottom. Write the equation
qrad/qcond = fn(N,Θ ≡ Th/Tc), where N is a dimensionless
group containing σ , k, L, and Tc . Plot N as a function of Θ for
qrad/qcond = 1, 0.8, and 1.2 (and for other values if you wish).

Now suppose that you have a system in which L = 10 cm, Tc =
100 K, and the gas is hydrogen with an average k of 0.1 W/m·K
. Further suppose that you wish to operate in such a way that
the conduction and radiation heat fluxes are identical. Identify
the operating point on your curve and report the value of Th
that you must maintain.

1.17 A blackened copper sphere 2 cm in diameter and uniformly at
200◦C is introduced into an evacuated black chamber that is
maintained at 20◦C.

• Write a differential equation that expresses T(t) for the
sphere, assuming lumped thermal capacity.

Figure 1.19 Configuration for
Problem 1.15
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• Identify a dimensionless group, analogous to the Biot num-
ber, than can be used to tell whether or not the lumped-
capacity solution is valid.

• Show that the lumped-capacity solution is valid.

• Integrate your differential equation and plot the tempera-
ture response for the sphere.

1.18 As part of a space experiment, a small instrumentation pack-
age is released from a space vehicle. It can be approximated
as a solid aluminum sphere, 4 cm in diameter. The sphere is
initially at 30◦C and it contains a pressurized hydrogen compo-
nent that will condense and malfunction at 30 K. If we take the
surrounding space to be at 0 K, how long may we expect the im-
plementation package to function properly? Is it legitimate to
use the lumped-capacity method in solving the problem? (Hint:
See the directions for Problem 1.17.) [Time = 5.8 weeks.]

Figure 1.20 Configuration for
Problem 1.19

1.19 Consider heat conduction through the wall as shown in Fig. 1.20.
Calculate q and the temperature of the right-hand side of the
wall.

1.20 Throughout Chapter 1 we have assumed that the steady tem-
perature distribution in a plane uniform wall in linear. To prove
this, simplify the heat diffusion equation to the form appropri-
ate for steady flow. Then integrate it twice and eliminate the
two constants using the known outside temperatures Tleft and
Tright at x = 0 and x = wall thickness, L.

1.21 The thermal conductivity in a particular plane wall depends as
follows on the wall temperature: k = A + BT , where A and B
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are constants. The temperatures are T1 and T2 on either side
if the wall, and its thickness is L. Develop an expression for q.

Figure 1.21 Configuration for
Problem 1.22

1.22 Find k for the wall shown in Fig. 1.21. What might it be made
of?

Figure 1.22 Configuration for Problem 1.23

1.23 What are Ti, Tj , and Tr in the wall shown in Fig. 1.22? [Tj =
16.44◦C.]

1.24 An aluminum can of beer or soda pop is removed from the re-
frigerator and set on the table. If h is 13.5 W/m2K, estimate
when the beverage will be at 15◦C. State all of your assump-
tions.
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1.25 One large, black wall at 27◦C faces another whose surface is
127◦C. The gap between the two walls is evacuated. If the sec-
ond wall is 0.1 m thick and has a thermal conductivity of 17.5
W/m·K, what is its temperature on the back side? (Assume
steady state.)

1.26 A 1 cm diameter, 1% carbon steel sphere, initially at 200◦C, is
cooled by natural convection, with air at 20◦C. In this case, h is
not independent of temperature. Instead, h = 3.51(∆T ◦C)1/4

W/m2K. Plot Tsphere as a function of t. Verify the lumped-
capacity assumption.

1.27 A 3 cm diameter, black spherical heater is kept at 1100◦C. It
radiates through an evacuated annulus to a surrounding spher-
ical shell of Nichrome V. the shell has a 9 cm inside diameter
and is 0.3 cm thick. It is black on the inside and is held at
25◦C on the outside. Find (a) the temperature of the inner wall
of the shell and (b) the heat transfer, Q. (Treat the shell as a
plane wall.)

1.28 The sun radiates 650 W/m2 on the surface of a particular lake.
At what rate (in mm/hr) would the lake evaporate away if all of
this energy went to evaporating water? Discuss as many other
ways you can think of that this energy can be distributed (hfg

for water is 2,257,000 J/kg). Do you suppose much of the 650
W/m2 goes to evaporation?

1.29 It is proposed to make picnic cups, 0.005 m thick, of a new
plastic for which k = ko(1+AT 2), where T is expressed in ◦C,
ko = 0.15 W/m·K, and a = 10−4 ◦C−2. We are concerned with
thermal behavior in the extreme case in which T = 100◦C in
the cup and 0◦C outside. Plot T against position in the cup
wall and find the heat loss, q.

1.30 A disc-shaped wafer of diamond 1 lb is the target of a very high
intensity laser. The disc is 5 mm in diameter and 1 mm deep.
The flat side is pulsed intermittently with 1010 W/m2 of energy
for one microsecond. It is then cooled by natural convection
from that same side until the next pulse. If h = 10 W/m2K and
T∞=30◦C, plot Tdisc as a function of time for pulses that are
50 s apart and 100 s apart. (Note that you must determine the
temperature the disc reaches before it is pulsed each time.)
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1.31 A 150 W light bulb is roughly a 0.006 m diameter sphere. Its
steady surface temperature is room air is 90◦C, and h on the
outside is 7 W/m2K. What fraction of the heat transfer from
the bulb is by radiation directly from the filament through the
glass? (State any additional assumptions.)

1.32 How much entropy does the light bulb in Problem 1.31 pro-
duce?

1.33 Air at 20◦C flows over one side of a thin metal sheet (h = 10.6
W/m2K). Methanol at 87◦C flows over the other side (h = 141
W/m2K). The metal functions as an electrical resistance heater,
releasing 1000 W/m2. Calculate (a) the heater temperature, (b)
the heat transfer from the methanol to the heater, and (c) the
heat transfer from the heater to the air.

1.34 A black heater is simultaneously cooled by 20◦C air (h = 14.6
W/m2K) and by radiation to a parallel black wall at 80◦C. What
is the temperature of the first wall if it delivers 9000 W/m2.

1.35 An 8 oz. can of beer is taken from a 3◦C refrigerator and placed
in a 25◦C room. The 6.3 cm diameter by 9 cm high can is placed
on an insulated surface (h = 7.3 W/m2K). How long will it take
to reach 12◦C? Discuss your assumptions.

1.36 A resistance heater in the form of a thin sheet runs parallel with
3 cm slabs of cast iron on either side of an evacuated cavity.
The heater, which releases 8000 W/m2, and the cast iron are
very nearly black. The outside surfaces of the cast iron slabs
are kept at 10◦C. Determine the heater temperature and the
inside slab temperatures.

1.37 A black wall at 1200◦C radiates to the left side of a parallel
slab of type 316 stainless steel, 5 mm thick. The right side of
the slab is to be cooled convectively and is not to exceed 0◦C.
Suggest a convective process that will achieve this.

1.38 A cooler keeps one side of a 2 cm layer of ice at −10◦C. The
other side is exposed to air at 15◦C. What ish just on the edge of
melting? Must h be raised or lowered if melting is to progress?
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1.39 At what minimum temperature does a black heater deliver its
maximum monochromatic emissive power in the visible range?
Compare your result with Fig. 10.2.

1.40 The local heat transfer coefficient during the laminar flow of
fluid over a flat plate of length L is equal to F/x1/2, where F is
a function of fluid properties and the flow velocity. How does
h compare with H(x + L)? (x is the distance from the leading
edge of the plate.)

1.41 An object is initially at a temperature above that of its sur-
roundings. We have seen that many kinds of convective pro-
cesses will bring the object into equilibrium with its surround-
ings. Describe the characteristics of a process that will do so
with the least net increase of the entropy of the universe.

1.42 A 250◦C cylindrical copper billet, 4 cm in diameter and 8 cm
long, is cooled in air at 25◦C. The heat transfer coefficient is
5 W/m2K. Can this be treated as lumped-capacity cooling? What
is the temperature of the billet after 10 minutes?

1.43 The sun’s diameter is 1,392,000 km, and it emits energy as if
it were a black body at 5777 K. Determine the rate at which it
emits energy. Compare this with a value from the literature.
What is the sun’s energy output in a year?

Bibliography of Historical and Advanced Texts

We include no specific references for the ideas introduced in Chapter 1
since these may be found in introductory thermodynamics or physics
books. References 1–6 are some texts which have strongly influenced
the field. The rest are relatively advanced texts or handbooks which go
beyond the present textbook.
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2. Heat conduction concepts,
thermal resistance, and the
overall heat transfer coefficient

It is the fire that warms the cold, the cold that moderates the heat. . .the
general coin that purchases all things. . .

Don Quixote, M. de Cervantes

2.1 The heat diffusion equation

Objective

We must now develop some ideas that will be needed for the design of
heat exchangers. The most important of these is the notion of an overall
heat transfer coefficient. This is a measure of the general resistance of a
heat exchanger to the flow of heat, and usually it must be built up from
analyses of component resistances. In particular, we must know how to
predict h and how to evaluate the conductive resistance of bodies more
complicated than plane passive walls. The evaluation of h is a matter
that must be deferred to Chapter 6 and 7. For the present, h values must
be considered given information in any problem.

The heat conduction component of most heat exchanger problems is
more complex than the simple planar analyses done in Chapter 1. To
do such analyses, we must next derive the heat conduction equation and
learn to solve it.

Consider the general temperature distribution in a three-dimensional
body as depicted in Fig. 2.1. For some reason (heating from one side,
in this case), there is a space- and time-dependent temperature field in
the body. This field T = T(x,y, z, t) or T(�r , t), defines instantaneous
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Figure 2.1 A three-dimensional, transient temperature field.

isothermal surfaces, T1, T2, and so on.

We next consider a very important vector associated with the scalar,
T . The vector that has both the magnitude and direction of the maximum
increase of temperature at each point is called the temperature gradient,
∇T :

∇T ≡ �i
∂T
∂x

+ �j
∂T
∂y

+ �k
∂T
∂z

(2.1)

Fourier’s law

“Experience”—that is, physical observation—suggests two things about
the heat flow that results from temperature nonuniformities in a body.
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These are:

�q
|�q| = −

∇T
|∇T |

{
This says that �q and∇T are exactly opposite one
another in direction

and

|�q| ∝ |∇T |
{

This says that the magnitude of the heat flux is
directly proportional to the temperature gradient

Notice that the heat flux is now written as a quantity that has a specified
direction as well as a specified magnitude. Fourier’s law summarizes this
physical experience succinctly as

�q = −k∇T (2.2)

which resolves itself into three components:

qx = −k∂T∂x qy = −k∂T∂y qz = −k∂T∂z
The “constant” k—the thermal conductivity—also depends on position
and temperature in the most general case:

k = k[�r , T(�r , t)] (2.3)

Fortunately, most materials (though not all of them) are very nearly ho-
mogeneous. Thus we can usually write k = k(T). The assumption that
we really want to make is that k is constant. Whether or not that is legit-
imate must be determined in each case. As is apparent from Fig. 2.2 and
Fig. 2.3, k almost always varies with temperature. It always rises with T
in gases at low pressures, but it may rise or fall in metals or liquids. The
problem is that of assessing whether or not k is approximately constant
in the range of interest. We could safely take k to be a constant for iron
between 0◦ and 40◦C (see Fig. 2.2), but we would incur error between
−100◦ and 800◦C.

It is easy to prove (Problem 2.1) that if k varies linearly with T , and
if heat transfer is plane and steady, then q = k∆T/L, with k evaluated
at the average temperature in the plane. If heat transfer is not planar
or if it is not simply A + BT , it can be much more difficult to specify a
single accurate effective value of k. If ∆T is not large, one can still make a
reasonably accurate approximation using a constant average value of k.



Figure 2.2 Variation of thermal conductivity of metallic solids
with temperature
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Figure 2.3 The temperature dependence of the thermal con-
ductivity of liquids and gases that are either saturated or at 1
atm pressure.
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Figure 2.4 Control volume in a
heat-flow field.

We have now revisited Fourier’s law in three dimensions and found
that there is more to it than we saw in Chapter 1. Next we write the
heat conduction equation in three dimensions. We begin, as we did in
Chapter 1, with the First Law statement, eqn. (1.3):

Q = dU
dt

This time we apply eqn. (1.3) to a three-dimensional control volume, as
shown in Fig. 2.4.1 The control volume is a finite region of a conducting
body, which we set aside for analysis. The surface is denoted as S and the
volume and the region as R; both are at rest. An element of the surface,
dS, is identified and two vectors are shown on dS: one is the unit normal
vector, �n (with |�n| = 1), and the other is the heat flux vector, �q = −k∇T ,
at that point on the surface.

We also allow the possibility that a volumetric heat release equal to
q̇(�r) W/m3 is distributed through the region. This might be the result of
chemical or nuclear reaction, of electrical resistance heating, of external
radiation into the region or of still other causes. With reference to Fig. 2.4,
we can write the heat flux, dQ, out of dS as

dQ = (−k∇T) · (�ndS) (2.4)

If heat is also being generated (or consumed) within the region R, it
must be added to eqn. (2.4) to get the net heat rate in R:

Q = −
∫
S
(−k∇T) · (�ndS)+

∫
R
q̇ dR (2.5)

1Figure 2.4 is the three-dimensional version of the control volume shown in Fig. 1.8.
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The rate of energy increase of the region R is

dU
dt

=
∫
R

(
ρc

∂T
∂t

)
dR (2.6)

where the derivative of T is in partial form because T is a function of
both �r and t.

Finally, we combine Q, as given by eqn. (2.5), and dU/dt, as given by
eqn. (2.6), into eqn. (1.3). After rearranging the terms, we obtain

∫
S
k∇T · �ndS =

∫
R

[
ρc

∂T
∂t
− q̇

]
dR (2.7)

To get the left-hand side into a convenient form, we introduce Gauss’s
theorem, which converts a surface integral into a volume integral. Gauss’s
theorem says that if �A is any continuous function of position, then

∫
S
�A · �ndS =

∫
R
∇ · �AdR (2.8)

Therefore, if we identify �A with (k∇T), eqn. (2.7) reduces to

∫
R

(
∇ · k∇T − ρc

∂T
∂t
+ q̇

)
dR = 0 (2.9)

Next, since the region R is arbitrary, the integrand must vanish identi-
cally.2 We therefore get the heat diffusion equation in three dimensions:

∇ · k∇T + q̇ = ρc
∂T
∂t

(2.10)

The limitations on this equation are:

• Incompressible medium. (This was implied when no expansion
work term was included.)

• No convection. (The medium cannot undergo any relative motion.
However, it can be a liquid or gas as long as it sits still.)

2Consider
∫
f(x)dx = 0. If f(x) were, say, sin x, then this could only be true

over intervals of x = 2π or multiples of it. For eqn. (2.9) to be true for any range of
integration one might choose, the terms in parentheses must be zero everywhere.
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If the variation of kwith T is small, k can be factored out of eqn. (2.10)
to get

∇2T + q̇
k
= 1
α
∂T
∂t

(2.11)

This is a more complete version of the heat conduction equation [recall
eqn. (1.14)] and α is the thermal diffusivity which was discussed after
eqn. (1.14). The term∇2T ≡ ∇·∇T is called the Laplacian. It arises thus
in a Cartesian coordinate system:

∇ · k∇T � k∇ ·∇T = k
(
�i
∂
∂x

+ �j
∂
∂y

+ �k
∂
∂x

)
·
(
�i
∂T
∂x

+ �j
∂T
∂y

+ �k
∂T
∂z

)

or

∇2T = ∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z2

(2.12)

The Laplacian can also be expressed in cylindrical or spherical coor-
dinates. The results are:

• Cylindrical:

∇2T ≡ 1
r
∂
∂r

(
r
∂T
∂r

)
+ 1
r2

∂2T
∂θ2

+ ∂2T
∂z2

(2.13)

• Spherical:

∇2T ≡1
r
∂2(rT)
∂r2

+ 1
r2 sinθ

∂
∂θ

(
sinθ

∂T
∂θ

)
+ 1

r2 sin2 θ
∂2T
∂φ2

(2.14a)

or

≡ 1
r2

∂
∂r

(
r2 ∂T

∂r

)
+ 1
r2 sinθ

∂
∂θ

(
sinθ

∂T
∂θ

)
+ 1

r2 sin2 θ
∂2T
∂φ2

(2.14b)

where the coordinates are as described in Fig. 2.5.



Figure 2.5 Cylindrical and spherical coordinate schemes.
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2.2 Solutions of the heat diffusion equation

We are now in position to calculate the temperature distribution and/or
heat flux in bodies with the help of the heat diffusion equation. In every
case, we first calculate T(�r , t). Then, if we want the heat flux as well, we
differentiate T to get q from Fourier’s law.

The heat diffusion equation is a partial differential equation (p.d.e.)
and the task of solving it may seem difficult, but we can actually do a
lot with fairly elementary mathematical tools. For one thing, in one-
dimensional steady-state situations the heat diffusion equation becomes
an ordinary differential equation (o.d.e.); for another, the equation is lin-
ear and therefore not too formidable, in any case. Our procedure can be
laid out, step by step, with the help of the following example.

Example 2.1 Basic Method

A large, thin concrete slab of thickness L is “setting.” Setting is an
exothermic process that releases q̇ W/m3. The outside surfaces are
kept at the ambient temperature, so Tw = T∞. What is the maximum
internal temperature?

Solution.

Step 1. Pick the coordinate scheme that best fits the problem and iden-
tify the independent variables that determine T. In the example,
T will probably vary only along the thin dimension, which we will
call the x-direction. (We should want to know that the edges are
insulated and that L was much smaller than the width or height.
If they are, this assumption should be quite good.) Since the in-
terior temperature will reach its maximum value when the pro-
cess becomes steady, we write T = T(x only).

Step 2. Write the appropriate d.e., starting with one of the forms of
eqn. (2.11).

∂2T
∂x2

+ ∂2T
∂y2

+ ∂2T
∂z2︸ ︷︷ ︸

=0, since
T ≠ T(y or z)

+ q̇
k
= 1

α
∂T
∂t︸ ︷︷ ︸

= 0, since
steady

Therefore, since T = T(x only), the equation reduces to the
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ordinary d.e.

d2T
dx2

= − q̇
k

Step 3. Obtain the general solution of the d.e. (This is usually the
easiest step.) We simply integrate the d.e. twice and get

T = − q̇
2k

x2 + C1x + C2

Step 4. Write the “side conditions” on the d.e.—the initial and bound-
ary conditions. This is always the hardest part for the beginning
students; it is the part that most seriously tests their physical
or “practical” understanding of problems.

Normally, we have to make two specifications of temperature
on each position coordinate and one on the time coordinate to
get rid of the constants of integration in the general solution.
(These matters are discussed at greater length in Chapter 4.)

In this case there are two boundary conditions:

T(x = 0) = Tw and T(x = L) = Tw

Very Important Warning: Never, never introduce inaccessible
information in a boundary or initial condition. Always stop and
ask yourself, “Would I have access to a numerical value of the
temperature (or other data) that I specify at a given position or
time?” If the answer is no, then your result will be useless.

Step 5. Substitute the general solution in the boundary and initial con-
ditions and solve for the constants. This process gets very com-
plicated in the transient and multidimensional cases. Fourier
series methods are typically needed to solve the problem. How-
ever, the steady one-dimensional problems are usually easy. In
the example, by evaluating at x = 0 and x = L, we get:

Tw = −0+ 0+ C2 so C2 = Tw

Tw = − q̇L
2

2k
+ C1L+ C2︸ ︷︷ ︸

=Tw

so C1 = q̇L
2k
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Figure 2.6 Temperature distribution in the setting concrete
slab Example 2.1.

Step 6. Put the calculated constants back in the general solution to get
the particular solution to the problem. In the example problem
we obtain:

T = − q̇
2k

x2 + q̇
2k

Lx + Tw

This should be put in neat dimensionless form:

T − Tw
q̇L2

/
k
= 1

2

[
x
L
−

(
x
L

)2
]

(2.15)

Step 7. Play with the solution—look it over—see what it has to tell you.
Make any checks you can think of to be sure it is correct. In this
case we plot eqn. (2.15) in Fig. 2.6. The resulting temperature
distribution is parabolic and, as we would expect, symmetrical.
It satisfies the boundary conditions at the wall and maximizes
in the center. By nondimensionalizing the result, we have suc-
ceeded in representing all situations with a simple curve. That
is highly desirable when the calculations are not simple, as they
are here. (Notice that T actually depends on five different things,
yet the solution is a single curve on a two-coordinate graph.)
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Finally, we check to see if the heat flux at the wall is correct:

qwall = −k∂T∂x
∣∣∣∣
x=0

= k
[
q̇
k
x − q̇L

2k

]
x=0

= − q̇L
2

Thus, half of the total energy generated in the slab comes out
of the front side, as we would expect. The solution appears to
be correct.

Step 8. If the temperature field is now correctly established, you can,
if you wish, calculate the heat flux at any point in the body by
substituting T(�r , t) back into Fourier’s law. We did this already,
in Step 7, to check our solution.

We shall run through additional examples in this section and the fol-
lowing one. In the process, we shall develop some important results for
future use.

Example 2.2 The Simple Slab

A slab shown in Fig. 2.7 is at a steady state with dissimilar temper-
atures on either side and no internal heat generation. We want the
temperature distribution and the heat flux through it.

Solution. These can be found quickly by following the steps set
down in Example 2.1:

Figure 2.7 Heat conduction in a slab (Example 2.2).
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Step 1. T = T(x)

Step 2.
d2T
dx2

= 0

Step 3. T = C1x + C2

Step 4. T(x = 0) = T1; and T(x = L) = T2

Step 5. T1 = 0+ C2, so C2 = T1; and T2 = C1x + C2, so C1 = T2 − T1

L

Step 6. T = T1 + T2 − T1

L
x; or

T − T1

T2 − T1
= x
L

Step 7. We note that the solution satisfies the boundary conditions
and that the temperature profile is linear.

Step 8. q = −kdT
dx

= −k d
dx

(
T1 − T1 − T2

L
x
)
x of interest

so that q = k
∆T
L

This result, which is the simplest heat conduction solution, calls to
mind Ohm’s law. Thus, if we rearrange it:

Q = ∆T
L/kA

is like I = E
R

where L/kA assumes the role of a thermal resistance, to which we give
the symbol Rt . Rt has the dimensions of (W/K)−1. Figure 2.8 shows
how we can represent heat flow through the slab with a diagram that is
perfectly analogous to an electric circuit.

2.3 Thermal resistance and the electrical analogy

Fourier’s, Fick’s, and Ohm’s laws

Fourier’s law has several extremely important analogies in other kinds of
physical behavior, of which the electrical analogy is only one. These anal-
ogous processes provide us with a good deal of guidance in the solution
of heat transfer problems And, conversely, heat conduction analyses can
often be adapted to describe those processes.
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Figure 2.8 Ohm’s law analogy to plane conduction.

Let us first consider Ohm’s law in three dimensions:

flux of electrical charge = �I
A
≡ �J = −γ∇V (2.16)

�I amperes is the vectorial electrical current, A is an area normal to the
current vector, �J is the flux of current or current density, γ is the electrical
conductivity in cm/ohm·cm2, and V is the voltage.

To apply eqn. (2.16) to a one-dimensional current flow situation, as
pictured in Fig. 2.9, we write eqn. (2.16) as

J = −γdV
dx

= γ
∆V
L
, (2.17)

but ∆V is the applied voltage, E, and the resistance of the wire is R ≡
L
/
γA. Then, since I = J A, eqn. (2.17) becomes

I = E
R

(2.18)

which is the familiar, but restrictive, one-dimensional statement of Ohm’s
law.
Fick’s law is another analogous relation. It states that during mass

diffusion, the flux, �j1, of a dilute component, 1, into a second fluid, 2, is
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Figure 2.9 The one-dimensional flow of
current.

proportional to the gradient of its mass concentration, m1. Thus

�j1 = −ρD12∇m1 (2.19)

where the constant D12 is the binary diffusion coefficient.

Example 2.3

Air fills a tube 1 m in length. There is a small water leak at one end
where the water vapor concentration builds to a mass fraction of 0.01.
A desiccator maintains the concentration at zero on the other side.
What is the steady flux of water from one side to the other if D12 is
0.000284 m2/s and ρ = 1.18 kg/m3?

Solution.

∣∣∣�jwater vapor

∣∣∣ =
(

0.000284
m2

s

)(
1.18

kg
m3

)(
0.01 kg H2O/kg mixture

1 m

)

= 0.00000335
kg

m2·s

Contact resistance

One place in which the usefulness of the electrical resistance analogy be-
comes immediately apparent is at the interface of two conducting media.
No two solid surfaces will ever form perfect thermal contact when they
are pressed together. Since some roughness is always present, a typical
plane of contact will always include tiny air gaps as shown in Fig. 2.10
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Figure 2.10 Heat transfer through the contact plane between
two solid surfaces.

(which is drawn with a highly exaggerated vertical scale). Heat transfer
follows two paths through such an interface. Conduction through points
of solid-to-solid contact is very effective, but conduction through the gas-
filled interstices, which have low thermal conductivity, can be very poor.

We treat the contact surface by placing a interfacial conductance, hc ,
in series with the conducting materials on either side. The coefficient hc
is similar to a heat transfer coefficient and has the same units, W/m2K.
Its inverse, 1/hc , is the contact resistance.

The interfacial conductance, hc , depends on the following factors:

• The surface finish and cleanliness of the contacting solids.

• The materials that are in contact.

• The pressure with which the surfaces are forced together.

• the substance (or lack of it) in the interstitial spaces.

• the temperature at the contact plane.

The influence of pressure is usually a modest one up to around 10 atm
in most metals. Beyond that, increasing plastic deformation of the local
contact points causes hc to increase more dramatically at high pressure.
Table 2.1 gives typical values of contact resistances which bear out most
of the preceding points. These values have been adapted from [2.1, Chap.
3] and [2.2].
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Table 2.1 Some typical interfacial conductances (air gaps not
evacuated)

Situation hc (W/m2K)

Copper/copper (moderate pressure
and normal finishes)

10,000− 25,000

Aluminum/aluminum (moderate
pressure and normal finishes)

2,200− 12,000

Graphite/metals (moderate pressure
and normal finishes)

3,000− 6,000

Ceramic/metals (moderate pressure
and normal finishes)

1,500− 8,500

Ceramic/ceramic (moderate pressure
and normal finishes)

500− 3,000

Stainless steel/stainless steel
(moderate pressure and normal
finishes)

300− 3,700

Rough aluminum/aluminum (low
pressure and evacuated interstices)

∼ 150

Iron/aluminum (70 atm pressure) 45,000

Example 2.4

Heat flows through two stainless steel slabs (k = 18 W/m·K) pressed
together. How thin must the slabs be before contact resistance is
important?

Solution. With reference to Fig. 2.11, we can write

Rtotal = L
18
+ 1
hc
+ L

18

but hc is about 2,500. Therefore,

2L
18

must be � 1
2500

= 0.0004

so L must be greater than 0.0036 m if contact resistance is to be
ignored. A thickness of 4 cm would reduce the error to about 10%.
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Figure 2.11 Conduction through two
stainless steel slabs with a contact
resistance.

Resistances for cylinders and for convection

As we continue developing our method of solving one-dimensional heat
conduction problems, we find that other avenues of heat flow may also
be expressed as thermal resistances, and introduced into the solutions
that we obtain. We also find that, once the heat conduction equation
has been solved, the results themselves may be used as new thermal
resistance terms.

Example 2.5 Radial Heat Conduction in a Tube

Find the temperature distribution and the heat flux for the long hollow
cylinder shown in Fig. 2.12.

Solution.

Step 1. T = T(r)

Step 2.

1
r
∂
∂r

(
r
∂T
∂r

)
+ 1

r2

∂2T
∂φ2

+ ∂2T
∂z2︸ ︷︷ ︸

=0, since T ≠ T(φ, z)

+ q̇
k︸︷︷︸
=0

= 1
α
∂T
∂T︸ ︷︷ ︸

=0, since steady

Step 3. Integrate once: r
∂T
∂r

= C1; integrate again: T = C1 ln r + C2

Step 4. T(r = ri) = Ti and T(r = ro) = To
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Figure 2.12 Heat transfer through a cylinder with a fixed wall
temperature (Example 2.5).

Step 5.

Ti = C1 ln ri + C2

To = C1 ln ro + C2

�⇒



C1 = Ti − To

ln(ri/ro)
= − ∆T

ln(ro/ri)

C2 = Ti + ∆T
ln(ro/ri)

ln ri

Step 6. T = Ti − ∆T
ln(ro/ri)

(ln r − ln ri) or

T − Ti
To − Ti

= ln(r/ri)
ln(ro/ri)

(2.20)

Step 7. The solution is plotted in Fig. 2.12. We see that the temper-
ature profile is logarithmic and that it satisfies both boundary
conditions. Furthermore, it is instructive to see what happens
when the wall of the cylinder is very thin, or when ri/ro is close
to 1. In this case:

ln(r/ri) � r
ri
− 1 = r − ri

ri
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and

ln(ro/ri) � ro − ri
ri

Thus eqn. (2.20) becomes

T − Ti
To − Ti

= r − ri
ro − ri

which is a simple linear profile. This is the same solution that
we would get in a plane wall.

Step 8. At any station, r :

qradial = −k∂T∂r = +
l∆T

ln(ro/ri)
1
r

So the heat flux falls off inversely with radius. That is reason-
able, since the same heat flow must pass through an increasingly
large surface as the radius increases. Let us see if this is the case
for a cylinder of length l:

Q (W) = (2πrl)q = 2πkl∆T
ln(ro/ri)

≠ f(r) (2.21)

Finally, we again recognize Ohm’s law in this result and write
the thermal resistance for a cylinder:

Rtcyl =
ln(ro/ri)

2πlk

(
K
W

)
(2.22)

This can be compared with the resistance of a plane wall:

Rtwall =
L
kA

(
K
W

)

Both resistances are inversely proportional to k, but each re-
flects a different geometry.

In the preceding examples, the boundary conditions were all the same
—a temperature specified at an outer edge. Next let us suppose that the
temperature is specified in the environment away from a body, with a
heat transfer coefficient between the environment and the body.
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Figure 2.13 Heat transfer through a cylinder with a convective
boundary condition (Example 2.6).

Example 2.6 A Convective Boundary Condition

A convective heat transfer coefficient around the outside of the cylin-
der in Example 2.5 provides thermal resistance between the cylinder
and an environment at T = T∞, as shown in Fig. 2.13. Find the tem-
perature distribution and heat flux in this case.

Solution.

Step 1 through 3. These are the same as in Example 2.5.

Step 4. The first boundary condition is T(r = ri) = Ti. The second
boundary condition must be expressed as an energy balance at
the outer wall (recall Section 1.3).

qconvection = qconduction
at the wall

or

h(T − T∞)r=ro = −k
∂T
∂r

∣∣∣∣
r=ro

Step 5. From the first boundary condition we obtain Ti = C1 ln ri +
C2. It is easy to make mistakes when we substitute the general
solution into the second boundary condition, so we will do it in
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detail:

h
[
(C1 ln r + C2)− T∞

]
r=ro

= −k
[
∂
∂r

(C1 ln r + C2)
]
r=ro

(2.23)

A common error is to substitute T = To on the lefthand side
instead of substituting the entire general solution. That will do
no good, because To is not an accessible piece of information.
Equation (2.23) reduces to:

h(T∞ − C1 ln ro − C2) = kC1

ro

When we combine this with the result of the first boundary con-
dition to eliminate C2:

C1 = − Ti − T∞
k
/
(hro)+ ln(ro/ri)

= T∞ − Ti
1/Bi+ ln(ro/ri)

Then

C2 = Ti − T∞ − Ti
1/Bi + ln(ro/ri)

ln ri

Step 6.

T = T∞ − Ti
1/Bi + ln(ro/ri)

ln(r/ri)+ Ti

This can be rearranged in fully dimensionless form:

T − Ti
T∞ − Ti

= ln(r/ri)
1/Bi + ln(ro/ri)

(2.24)

Step 7. Let us fix a value of ro/ri—say, 2—and plot eqn. (2.24) for
several values of the Biot number. The results are included
in Fig. 2.13. Some very important things show up in this plot.
When Bi � 1, the solution reduces to the solution given in Ex-
ample 2.5. It is as though the convective resistance to heat flow
were not there. That is exactly what we anticipated in Section 1.3
for large Bi. When Bi  1, the opposite is true: (T−Ti)

/
(T∞−Ti)
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Figure 2.14 Thermal circuit with two
resistances.

remains on the order of Bi, and internal conduction can be ne-
glected. How big is big and how small is small? We do not
really have to specify exactly. But in this case Bi < 0.1 signals
constancy of temperature inside the cylinder with about ±3%.
Bi > 20 means that we can neglect convection with about 5%
error.

Step 8. qradial = −k∂T∂r = k
Ti − T∞

1/Bi + ln(ro/ri)
1
r

This can be written in terms of Q (W) = qradial (2πrl) for a cylin-
der of length l:

Q = Ti − T∞
1

h2πrol
+ ln(ro/ri)

2πkl

= Ti − T∞
Rtconv + Rtcond

(2.25)

Equation (2.25) is once again analogous to Ohm’s law. But this time
the denominator is the sum of two thermal resistances, as would be
the case in a series circuit. We accordingly present the analogous
electrical circuit in Fig. 2.14.

The presence of convection on the outside surface of the cylinder
causes a new thermal resistance of the form

Rtconv =
1

hA
(2.26)

where A is the surface area over which convection occurs.

Example 2.7 Critical Radius of Insulation

An interesting consequence of the preceding result can be brought out
with a specific example. Suppose that we insulate a 0.5 cm O.D. copper
steam line with 85% magnesia to prevent the steam from condensing
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Figure 2.15 Thermal circuit for an
insulated tube.

too rapidly. The steam is under pressure and stays at 150◦C. The
copper is thin and highly conductive—obviously a tiny resistance in
series with the convective and insulation resistances, as we see in
Fig. 2.15. The condensation of steam in the tube also offers very little
resistance.3 But a heat transfer coefficient of h = 20 W/m2K offers
fairly high resistance on the outside. It turns out that insulation can
actually improve heat transfer in this case. Figure 2.16 is a plot of the
two significant resistances and their sum. A very interesting thing
occurs here. Rtconv falls off rapidly when ro is increased, because the
outside area is increasing. Accordingly, the total resistance passes
through a minimum in this case. Will it always do so? To find out, we
differentiate eqn. (2.25), setting l equal to a unit length of 1 m:

dQ
dro

= (Ti − T∞)(
1

2πroh
+ ln(ro/ri)

2πk

)2

(
− 1

2πr2
o h

+ 1
2πkro

)
= 0

We solve this for the value of ro = rcrit at which Rt is minimum. Thus,
we obtain

Bi = 1 = hrcrit

k
(2.27)

at the maximum heat flux. In the present example, added insulation
will increase heat loss instead of reducing it, until rcrit = k

/
h = 0.0037

m or rcrit/ri = 1.48. Indeed, insulation will not even start to do any
good until ro/ri=2.32 or ro = 0.0058 m. We call rcrit the critical radius
of insulation.

3The question of how much resistance to heat transfer is offered by condensation
inside the tube is the subject of Chapter 8. It turns out that h is generally enormous
during condensation and that Rtcondensation is tiny.
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Figure 2.16 The critical radius of insulation (Example 2.7),
written for a cylinder of unit length (l = 1 m).

There is an interesting catch here. For most cylinders, rcrit < ri and
the critical radius idiosyncrasy is of no concern. If our steam line had a 1
cm outside diameter, the critical radius difficulty would not have arisen.
The problem of cooling electrical wiring must be undertaken with this
problem in mind, but one need not worry about the critical radius in the
design of most large process equipment.

2.4 Overall heat transfer coefficient, U
Definition

We often want to transfer heat through composite resistances, as shown
in Fig. 2.17. It is very convenient to have a number, U , that works like
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Figure 2.17 A thermal circuit with many
resistances.

this4:

Q = UA∆T (2.28)

This number, called the overall heat transfer coefficient, is defined largely
by the system, and in many cases it proves to be insensitive to the oper-
ating conditions of the system. In Example 2.6, for example, we can use
the value Q given by eqn. (2.25) to get

U = Q(W)[
2πrol (m2)

]
∆T (◦C)

= 1
1

h
+ ro ln(ro/ri)

k

(W/m2K) (2.29)

We have based U on the outside area, ro, in this case. We might also have
based it on inside area and obtained

U = 1
ri
hro

+ ri ln(ro/ri)
k

(2.30)

It is therefore important to remember which area an overall heat trans-
fer coefficient is based on. It is particularly important that A and U be
consistent when we write Q = UA∆T .

Example 2.8

Estimate the overall heat transfer coefficient for the tea kettle shown
in Fig. 2.18. Note that the flame convects heat to the thin aluminum.
The heat is then conducted through the aluminum and finally con-
vected by boiling into the water.

Solution. We need not worry about deciding which area to base A
on because the area normal to the heat flux vector does not change.

4This U must not be confused with internal energy. The two terms should always
be distinct in context.
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Figure 2.18 Heat transfer through the bottom of a tea kettle.

We simply write the heat flow

Q = ∆T∑
Rt
= Tflame − Tboiling water

1

hA
+ L
kAlA

+ 1

hbA

and apply the definition of U

U = Q
A∆T

= 1
1

h
+ L
kAl

+ 1

hb

Let us see what typical numbers would look like in this example: h
might be around 200 W/m2K; L

/
kAl might be 0.001 m/(160 W/m·K)

or 1/160,000 W/m2K; and hb is quite large— perhaps about 5000
W/m2K. Thus:

U � 1
1

200
+ 1

160,000
+ 1

5000

= 192.1 W/m2K

It is clear that the first resistance is dominant, as is shown in Fig. 2.18.
Notice that in such cases

U �→ 1/Rtdominant (2.31)
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Figure 2.19 Heat transfer through a composite wall.

if we express Rt on a unit area basis (K/W per m2 of heat exchanger area).

Experiment 2.1

Boil water in a paper cup over an open flame and explain why you can
do so. [Recall eqn. (2.31) and see Problem 2.12.]

Example 2.9

A wall consists of alternating layers of pine and sawdust, as shown
in Fig. 2.19). The sheathes on the outside have negligible resistance
and h is known on the sides. Compute Q and U for the wall.

Solution. So long as the wood and the sawdust do not differ dramat-
ically from one another in thermal conductivity, we can approximate
the wall as a parallel resistance circuit, as shown in the figure.5 The
total thermal resistance of such a circuit is

5For this approximation to be exact, the resistances must be equal. If they differ
radically, the problem must be treated as two-dimensional.
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Rttotal = Rtconv +
1(

1
Rtpine

+ 1
Rtsawdust

)+ Rtconv

Thus

Q = ∆T
Rttotal

= T∞1 − T∞r

1

hA
+ 1(

kpAp

L
+ ksAs

L

)+ 1

hA

and

U = Q
A∆T

= 1

2

h
+ 1(

kp
L
Ap

A
+ ks

L
As

A

)

Typical values of U

In a fairly general use of the word, a heat exchanger is anything that
lies between two fluid masses at different temperatures. In this sense a
heat exchanger might be designed either to impede or to enhance heat
exchange. Consider some typical values of U in Table 2.2. These data
were assembled from [2.3], [2.4], various manufacturers’ literature, and
other general sources listed at the end of Chapter 1. If the exchanger
is intended to improve heat exchange, U will generally be much greater
than 40 W/m2K. If it is intended to impede heat flow, it will be less than
10 W/m2K—anywhere down to almost perfect insulation. You should
have some numerical concept of relative values of U , so we recommend
that you scrutinize the numbers in Table 2.2. Some things worth bearing
in mind are:

• The fluids with low thermal conductivities, such as tars, oils, or any
of the gases, usually yield low values of h. When such fluid flows
on one side of an exchanger, U will generally be pulled down.

• Condensing and boiling are very effective heat transfer processes.
They greatly improve U but they cannot override one very small
value of h on the other side of the exchange. (Recall Example 2.8.)
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Table 2.2 Typical values or ranges of U

Heat Exchange Configuration U (W/m2K)

Walls and roofs dwellings with a 24 km/h
exterior wind velocity:
• Insulated roofs 0.3−2
• Finished masonry walls 0.5−6
• Frame walls 0.8−5
• Uninsulated roofs 1.2−4

Single-pane windows ∼ 6†

Air to heavy tars and oils As low as 45
Air to low-viscosity liquids As high as 600
Air to various gases 60−550
Steam or water to oil 60−340
Liquids in coils immersed in liquids 110−2,000
Feedwater heaters 110−8,500
Air condensers 350−780
Steam-jacketed, agitated vessels 500−1,900
Shell-and-tube ammonia condensers 800−1,400
Steam condensers with 25◦C water 1,500−5,000
Heat pipes

• Cryogenic < 1,000
• Water 3,000
• Liquid metal 50,000

Condensing steam to high-pressure
boiling water

O(7,000)

† Main heat loss is by infiltration.

In fact:

• For a high U , all resistances in the exchanger must be low.

• The highly conducting liquids, such as water and liquid metals, give
high values of h and U .

Fouling resistance

Figure 2.20 shows one of the simplest forms of a heat exchanger—a pipe.
The inside is new and clean on the left, but on the right it has built up a
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Figure 2.20 The fouling of a pipe.

layer of scale. In conventional freshwater preheaters, for example, this
scale is typically MgSO4 (magnesium sulfate) or CaSO4 (calcium sulfate)
which precipitates onto the pipe wall after a time. To account for the re-
sistance offered by these buildups, we must include an additional, highly
empirical resistance when we calculate U . Thus, for the pipe shown in
Fig. 2.20,

U
∣∣∣older pipe

based on ri
= 1

1

hi
+ ri ln(ro/rp)

kinsul
+ ri ln(rp/ri)

kpipe
+ ri
roho

+ Rf

And clearly

Rf ≡ 1
Uold

− 1
Unew

(2.32)

Some typical values of Rf are given in Table 2.3. These values have
been adapted from [2.5] and [2.6]. Notice that fouling has the effect of
adding resistance on the order of 10−4 m2·K/W in series. It is rather like
another heat transfer coefficient, hf , on the order of 10,000 in series with
the other resistances in the exchanger.

The tabulated values of Rf are given to only one significant figure
because they are very approximate. Clearly, exact values would have to
be referred to specific heat exchanger materials, to fluid velocities, to
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Table 2.3 Some typical fouling resistances

Fluid and Situation
Fouling Resistance

Rf (m2·◦C/W)

Distilled water 0.0001
Seawater 0.0001− 0.0002
Treated boiler feedwater 0.0001− 0.0002
Clean river or lake water 0.0002− 0.0006
About the worst waters used in heat

exchangers
< 0.0020

Fuel oil 0.0001
Transformer or lubricating oil 0.0002
Most industrial liquids 0.0002
Most refinery liquids 0.0002− 0.0008
Non-oil-bearing steam 0.0001
Oil-bearing steam (e.g., turbine

exhaust)
0.0005

Most stable gases 0.0005
Fuel gases 0.0020
Engine exhaust gases 0.0020

operating temperatures, and to age. The resistance generally drops with
increased velocity and increases with temperature and age. The values
given in the table are based on reasonable maintenance and the use of
conventional heat exchangers. With misuse, a given heat exchanger can
yield much higher values of Rf .

Notice too, that if U � 1,000 W/m2K, fouling will be unimportant,
because it will introduce small resistances in series. Thus in a water-to-
water heat exchanger, in which U is on the order of 2000 W/m2K, fouling
might be important; but in a finned-tube heat exchanger with hot gas
in the tubes and cold gas passing across them, U might be around 200
W/m2K, and fouling should be insignificant.

Example 2.10

You have unpainted aluminum siding on your house and the engineer
has based a heat loss calculation on U = 5 W/m2K. You discover that
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air pollution levels are such that Rt is 0.0005 m2·K/W on the siding.
Should the engineer redesign the siding?

Solution. From eqn. (2.32) we get

1
Ucorrected

= 1
Uuncorrected

+ Rf = 0.2000+ 0.0005

Therefore, fouling is irrelevant to the calculation of domestic heat
loads.

Example 2.11

Since the engineer did not fail you in this calculation, you entrust him
with the installation of a heat exchanger at your plant. He installs a
water-cooled steam condenser with U = 4000 W/m2K. You discover
that he used water-side fouling resistance for distilled water but that
the water flowing in the tubes is not clear at all. How did he do this
time?

Solution. Equation (2.32) and Table 2.3 give

1
Ucorrected

= 1
4000

+ (0.0006 to 0.0020)

= 0.00085 to 0.00225 m2·K/W

Thus, U is reduced from 4,000 to between 444 and 1,176 W/m2K.
Fouling is crucial in this case, and the engineer was in serious error.

2.5 Summary

Four things have been done in this chapter:

• The heat diffusion equation has been established. A method has
been established for solving it in simple problems, and some im-
portant results have been presented. (We say much more about
solving the heat diffusion equation in Part II of this book.)

• We have explored the electric analogy to steady heat flow, paying
special attention to the concept of thermal resistance. We exploited
the analogy to solve heat transfer problems in the same way we
solve electrical circuit problems.
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• The overall heat transfer coefficient has been defined, and we have
seen how to build it up out of component resistances.

• Some practical problems encountered in the evaluation of overall
heat transfer coefficients have been discussed.

Three very important things have not been considered in Chapter 2:

• In all evaluations of U that involve values of h, we have taken these
values as given information. In any real situation, we must deter-
mine correct values of h for the specific situation. Part III deals with
such determinations.

• When fluids flow through heat exchangers, they give up or gain
energy. Thus, the driving temperature difference varies through
the exchanger. (Problem 2.14 asks you to consider this difficulty
in its simplest form.) Accordingly, the design of an exchanger is
complicated. We deal with this problem in Chapter 3.

• The heat transfer coefficients themselves vary with position inside
many types of heat exchangers, causingU to be position-dependent.

Problems

2.1 Prove that if k varies linearly with T in a slab, and if heat trans-
fer is one-dimensional and steady, then q may be evaluated pre-
cisely using k evaluated at the mean temperature in the slab.

2.2 Invent a numerical method for calculating the steady heat flux
through a plane wall when k(T) is an arbitrary function. Use the
method to predict q in an iron slab 1 cm thick if the temperature
varies from −100◦C on the left to 400◦C on the right. How
far would you have erred if you had taken kaverage = (kleft +
kright)/2?

2.3 The steady heat flux at one side of a slab is a known value qo.
The thermal conductivity varies with temperature in the slab,
and the variation can be expressed with a power series as

k =
i=n∑
i=0

AiT i
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(a) Start with eqn. (2.10) and derive an equation that relates T
to position in the slab, x. (b) Calculate the heat flux at any
position in the wall from this expression using Fourier’s law. Is
the resulting q a function of x?

2.4 Combine Fick’s law with the principle of conservation of mass
(of the dilute species) in such a way as to eliminate j1, and
obtain a second-order differential equation in m1. Discuss the
importance and the use of the result.

2.5 Solve for the temperature distribution in a thick-walled pipe if
the bulk interior temperature and the exterior air temperature,
T∞i , and T∞o , are known. The interior and the exterior heat
transfer coefficients are hi and ho, respectively. Follow the
method in Example 2.1 and put your result in the dimensionless
form:

T − T∞i

T∞i − T∞o
= fn (Bii,Bio, r/ri, ro/ri)

2.6 Put the boundary conditions from Problem 2.5 into dimension-
less form so that the Biot numbers appear in them. Let the Biot
numbers approach infinity. This should get you back to the
boundary conditions for Example 2.5. Therefore, the solution
that you obtain in Problem 2.5 should reduce to the solution
of Example 2.5 when the Biot numbers approach infinity. Show
that this is the case.

2.7 Write an accurate explanation of the idea of critical radius of
insulation that your kid brother or sister, who is still in grade
school, could understand. (If you do not have an available kid,
borrow one to see if your explanation really works.)

2.8 The slab shown in Fig. 2.21 is embedded on five sides in insu-
lating materials. The sixth side is exposed to an ambient tem-
perature through a heat transfer coefficient. Heat is generated
in the slab at the rate of 1.0 kW/m3 The thermal conductivity
of the slab is 0.2 W/m·K. (a) Solve for the temperature distri-
bution in the slab, noting any assumptions you must make. Be
careful to clearly identify the boundary conditions. (b) Evaluate
T at the front and back faces of the slab. (c) Show that your
solution gives the expected heat fluxes at the back and front
faces.



Problems 85

Figure 2.21 Configuration for
Problem 2.8.

2.9 Consider the composite wall shown in Fig. 2.22. The concrete
and brick sections are of equal thickness. Determine T1, T2,
q, and the percentage of q that flows through the brick. To
do this, approximate the heat flow as one-dimensional. Draw
the thermal circuit for the wall and identify all four resistances
before you begin.

2.10 Compute Q and U for Example 2.9 if the wall is 0.3 m thick.
Five (each) pine and sawdust layers are 5 and 8 cm thick, re-
spectively; and the heat transfer coefficients are 10 on the left
and 18 on the right. T∞1 = 30◦C and T∞r = 10◦C.

Figure 2.22 Configuration for
Problem 2.9.
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2.11 Compute U for the slab in Example 1.2.

2.12 Consider the tea kettle in Example 2.8. Suppose that the kettle
holds 1 kg of water (about 1 liter) and that the flame impinges
on 0.02 m2 of the bottom. (a) Find out how fast the water tem-
perature is increasing when it reaches its boiling point, and
calculate the temperature of the bottom of the kettle immedi-
ately below the water if the gases from the flame are at 500◦C
when they touch the bottom of the kettle. (b) There is an old
parlor trick in which one puts a paper cup of water over an
open flame and boils the water without burning the paper (see
Experiment 2.1). Explain this using an electrical analogy. [(a):
dT/dt = 0.37◦C/s.]

2.13 Copper plates 2 mm and 3 mm in thickness are processed
rather lightly together. Non-oil-bearing steam condenses un-
der pressure at Tsat = 200◦C on one side (h = 12,000 W/m2K)
and methanol boils under pressure at 130◦Con the other (h =
9000 W/m2K). Estimate U and q initially and after extended
service. List the relevant thermal resistances in order of de-
creasing importance and suggest whether or not any of them
can be ignored.

2.14 0.5 kg/s of air at 20◦C moves along a channel that is 1 m from
wall to wall. One wall of the channel is a heat exchange surface
(U = 300 W/m2K) with steam condensing at 120◦C on its back.
Determine (a) q at the entrance; (b) the rate of increase of tem-
perature of the fluid with x at the entrance; (c) the temperature
and heat flux 2 m downstream. [(c): T2m = 89.7◦C.]

2.15 An isothermal sphere 3 cm in diameter is kept at 80◦C in a large
clay region. The temperature of the clay far from the sphere is
kept at 10◦C. How much heat must be supplied to the sphere
to maintain its temperature if kclay = 1.28 W/m·K? (Hint: You
must solve the boundary value problem not in the sphere but
in the clay surrounding it.) [Q = 16.9 W.]

2.16 Is it possible to increase the heat transfer from a convectively
cooled isothermal sphere by adding insulation? Explain fully.

2.17 A wall consists of layers of metals and plastic with heat trans-
fer coefficients on either side. U is 255 W/m2K and the overall



Problems 87

temperature difference is 200◦C. One layer in the wall is stain-
less steel (k = 18 W/m·K) 3 mm thick. What is ∆T across the
stainless steel?

2.18 A 1% carbon-steel sphere 20 cm in diameter is kept at 250◦C on
the outside. It has an 8 cm diameter cavity containing boiling
water (hinside is very high) which is vented to the atmosphere.
What is Q through the shell?

2.19 A slab is insulated on one side and exposed to a surround-
ing temperature, T∞, through a heat transfer coefficient on the
other. There is nonuniform heat generation in the slab such
that q̇ =[A (W/m4)][x (m)], where x = 0 at the insulated wall
and x = L at the cooled wall. Derive the temperature distribu-
tion in the slab.

2.20 800 W/m3 of heat is generated within a 10 cm diameter nickel-
steel sphere for which k = 10 W/m·K. The environment is at
20◦C and there is a natural convection heat transfer coefficient
of 10 W/m2K around the outside of the sphere. What is its
center temperature at the steady state? [21.37◦C.]

2.21 An outside pipe is insulated and we measure its temperature
with a thermocouple. The pipe serves as an electrical resistance
heater, and q̇ is known from resistance and current measure-
ments. The inside of the pipe is cooled by the flow of liquid
with a known bulk temperature. Evaluate the heat transfer co-
efficient, h, in terms of known information. The pipe dimen-
sions and properties are known. [Hint: Remember that h is not
known and we cannot use a boundary condition of the third
kind at the inner wall to get T(r).]

2.22 Consider the hot water heater in Problem 1.11. Suppose that it
is insulated with 2 cm of a material for which k = 0.12 W/m2K,
and suppose that h = 16 W/m2K. Find (a) the time constant
T for the tank, neglecting the casing and insulation; (b) the
initial rate of cooling in ◦C/h; (c) the time required for the water
to cool from its initial temperature of 75◦C to 40◦C; (d) the
percentage of additional heat loss that would result if an outer
casing for the insulation were held on by eight steel rods, 1 cm
in diameter, between the inner and outer casings.
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2.23 A slab of thickness L is subjected to a constant heat flux, q1, on
the left side. The right-hand side if cooled convectively by an
environment at T∞. (a) Develop a dimensionless equation for
the temperature of the slab. (b) Present dimensionless equa-
tion for the left- and right-hand wall temperatures as well. (c)
If the wall is firebrick, 10 cm thick, q1 is 400 W/m2, h = 20
W/m2K, and T∞ = 20◦C, compute the lefthand and righthand
temperatures.

2.24 Heat flows steadily through a stainless steel wall of thickness
Lss = 0.06 m, with a variable thermal conductivity of kss = 1.67
+ 0.0143 T(◦C). It is partially insulated on the right side with
glass wool of thickness Lgw = 0.1 m, with a thermal conductivity
of kgw = 0.04. The temperature on the left-hand side of the
stainless stell is 400◦Cand on the right-hand side if the glass
wool is 100◦C. Evaluate q and Ti.

2.25 Rework Problem 1.29 with a heat transfer coefficient, ho = 40
W/m2K on the outside (i.e., on the cold side).

2.26 A scientist proposes an experiment for the space shuttle in
which he provides underwater illumination in a large tank of
water at 20◦C, using a 3 cm diameter spherical light bulb. What
is the maximum wattage of the bulb in zero gravity that will not
boil the water?

2.27 A cylindrical shell is made of two layers– an inner one with
inner radius = ri and outer radius = rc and an outer one with
inner radius = rc and outer radius = ro. There is a contact
resistance, hc , between the shells. The materials are different,
and T1(r = ri) = Ti and T2(r = ro) = To. Derive an expression
for the inner temperature of the outer shell (T2c ).

2.28 A 1 kW commercial electric heating rod, 8 mm in diameter and
0.3 m long, is to be used in a highly corrosive gaseous environ-
ment. Therefore, it has to be provided with a cylindrical sheath
of fireclay. The gas flows by at 120◦C, and h is 230 W/m2K out-
side the sheath. The surface of the heating rod cannot exceed
800◦C. Set the maximum sheath thickness and the outer tem-
perature of the fireclay. [Hint: use heat flux and temperature
boundary conditions to get the temperature distribution. Then
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use the additional convective boundary condition to obtain the
sheath thickness.]

2.29 A very small diameter, electrically insulated heating wire runs
down the center of a 7.5 mm diameter rod of type 304 stain-
less steel. The outside is cooled by natural convection (h = 6.7
W/m2K) in room air at 22◦C. If the wire releases 12 W/m, plot
Trod vs. radial position in the rod and give the outside temper-
ature of the rod. (Stop and consider carefully the boundary
conditions for this problem.)

2.30 A contact resistance experiment involves pressing two slabs of
different materials together, putting a known heat flux through
them, and measuring the outside temperatures of each slab.
Write the general expression for hc in terms of known quanti-
ties. Then calculate hc if the slabs are 2 cm thick copper and
1.5 cm thick aluminum, if q is 30,000 W/m2, and if the two
temperatures are 15◦C and 22.1◦C.

2.31 A student working heat transfer problems late at night needs
a cup of hot cocoa to stay awake. She puts milk in a pan on an
electric stove and seeks to heat it as rapidly as she can, without
burning the milk, by turning the stove on high and stirring the
milk continuously. Explain how this works using an analogous
electric circuit. Is it possible to bring the entire bulk of the milk
up to the burn temperature without burning part of it?

2.32 A small, spherical hot air balloon, 10 m in diameter, weighs
130 kg with a small gondola and one passenger. How much
fuel must be consumed (in kJ/h) if it is to hover at low altitude
in still 27◦C air? (houtside = 215 W/m2K, as the result of natural
convection.)

2.33 A slab of mild steel, 4 cm thick, is held at 1,000◦C on the back
side. The front side is approximately black and radiates to
black surroundings at 100◦C. What is the temperature of the
front side?

2.34 With reference to Fig. 2.3, develop an empirical equation for
k(T) for ammonia vapor. Then imagine a hot surface at Tw
parallel with a cool horizontal surface at a distance H below it.



90 Chapter 2: Heat conduction, thermal resistance, and the overall heat transfer coefficient

Develop equations for T(x) and q. Compute q if Tw = 350◦C,
Tcool = −5◦C, and H = 0.15 m.

2.35 A type 316 stainless steel pipe has a 6 cm inside diameter and
an 8 cm outside diameter with a 2 mm layer of 85% magnesia
insulation around it. Liquid at 112◦C flows inside, so hi = 346
W/m2K. The air around the pipe is at 20◦C, and h0 = 6 W/m2K.
Calculate U based on the inside area. Sketch the equivalent
electrical circuit, showing all known temperatures. Discuss the
results.

2.36 Two highly reflecting, horizontal plates are spaced 0.0005 m
apart. The upper one is kept at 1000◦C and the lower one at
200◦C. There is air in between. Neglect radiation and compute
the heat flux and the midpoint temperature in the air. Use a
power-law fit of the form k = a(T ◦C)b to represent the air data
in Table A.6.

2.37 A 0.1 m thick slab with k = 3.4 W/m2K is held at 100◦C on the
left side. The right side is cooled with air at 20◦Cthrough a heat
transfer coefficient, and h = (5.1 W/m2(K)−5/4)(Twall−T∞)1/4.
Find q and Twall on the right.

2.38 Heat is generated at 54,000 W/m3 in a 0.16 m diameter sphere.
The sphere is cooled by natural convection with fluid at 0◦C,
and h = [2+6(Twall−T∞)1/4]W/m2K, ksphere = 9 W/m2K. Find
the wall temperature and center temperature of the sphere.

2.39 Layers of equal thickness of spruce and pitch pine are lami-
nated to make an insulating material. How should the lamina-
tions be oriented in a temperature gradient to achieve the best
effect?

2.40 The resistances of a thick cylindrical layer of insulation must
be increased. Will Q be lowered more by a small increase of
the outside diameter or by the same decrease in the inside di-
ameter?

2.41 You are in charge of energy conservation at your plant. There
is a 300 m run of 6 in. O.D. pipe carrying steam at 250◦C. The
company requires that any insulation must pay for itself in one
year. The thermal resistances are such that the surface of the
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pipe will stay close to 250◦C in air at 25◦C when h = 10 W/m2K.
Calculate the annual energy savings in kW·h that will result if
a 1 in layer of 85% magnesia insulation is added. If energy is
worth 6 cents per kW·h and insulation costs $75 per installed
linear meter, will the insulation pay for itself in one year?
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3. Heat exchanger design

The great object to be effected in the boilers of these engines is, to keep
a small quantity of water at an excessive temperature, by means of a
small amount of fuel kept in the most active state of combustion. . .No
contrivance can be less adapted for the attainment of this end than one or
two large tubes traversing the boiler, as in the earliest locomotive engines.

The Steam Engine Familiarly Explained and Illustrated,
Dionysus Lardner, 1836

3.1 Function and configuration of heat exchangers

The archetypical problem that any heat exchanger solves is that of get-
ting energy from one fluid mass to another, as we see in Fig. 3.1. A simple
or composite wall of some kind divides the two flows and provides an
element of thermal resistance between them. There is an exception to
this configuration in the direct-contact form of heat exchanger. Figure
3.2 shows one such arrangement in which steam is bubbled into water.
The steam condenses and the water is heated at the same time. In other
arrangements, immiscible fluids might contact each other or nonconden-
sible gases might be bubbled through liquids.

This discussion will be restricted to heat exchangers with a dividing
wall between the two fluids. There is an enormous variety of such config-
urations, but most commercial exchangers reduce to one of three basic
types. Figure 3.3 shows these types in schematic form. They are:

• The simple parallel or counterflow configuration. These arrange-
ments are versatile. Figure 3.4 shows how the counterflow arrange-
ment is bent around in a so-called Heliflow compact heat exchanger
configuration.

• The shell-and-tube configuration. Figure 3.5 shows the U-tubes of a
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Figure 3.1 Heat exchange.

two-tube-pass, one-shell-pass exchanger being installed in the sup-
porting baffles. The shell is yet to be added. Most of the really large
heat exchangers are of the shell-and-tube form.

• The cross-flow configuration. Figure 3.6 shows typical cross-flow
units. In Fig. 3.6a and c, both flows are unmixed. Each flow must
stay in a prescribed path through the exchanger and is not allowed
to “mix” to the right or left. Figure 3.6b shows a typical plate-fin
cross-flow element. Here the flows are also unmixed.

Figure 3.7, taken from the standards of the Tubular Exchanger Manu-
facturer’s Association (TEMA) [3.1], shows four typical single-shell-pass
heat exchangers and establishes nomenclature for such units.

These pictures also show some of the complications that arise in
translating simple concepts into hardware. Figure 3.7 shows an exchan-
ger with a single tube pass. Although the shell flow is baffled so that it
crisscrosses the tubes, it still proceeds from the hot to cold (or cold to
hot) end of the shell. Therefore, it is like a simple parallel (or counter-
flow) unit. The kettle reboiler in Fig. 3.7d involves a divided shell-pass
flow configuration over two tube passes (from left to right and back to the
“channel header”). In this case, the isothermal shell flow could be flowing
in any direction—it makes no difference to the tube flow. Therefore, this
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Figure 3.2 A direct-contact heat exchanger.

exchanger is also equivalent to either the simple parallel or counterflow
configuration.

Notice that a salient feature of shell-and-tube exchangers is the pres-
ence of baffles. Baffles serve to direct the flow normal to the tubes. We
find in Part III that heat transfer from a tube to a flowing fluid is usually
better when the flow moves across the tube than when the flow moves
along the tube. This augmentation of heat transfer gives the complicated
shell-and-tube exchanger an advantage over the simpler single-pass par-
allel and counterflow exchangers.

However, baffles bring with them a variety of problems. The flow pat-
terns are very complicated and almost defy analysis. A good deal of the
shell-side fluid might unpredictably leak through the baffle holes in the
axial direction, or it might bypass the baffles near the wall. In certain
shell-flow configurations, unanticipated vibrational modes of the tubes
might be excited. Many of the cross-flow configurations also baffle the
fluid so as to move it across a tube bundle. The plate-and-fin configura-
tion (Fig. 3.6b) is such a cross-flow heat exchanger.

In all of these heat exchanger arrangements, it becomes clear that a
dramatic investment of human ingenuity is directed towards the task of
augmenting the heat transfer from one flow to another. The variations
are endless, as you will quickly see if you try Experiment 3.1.

Experiment 3.1

Carry a notebook with you for a day and mark down every heat ex-
changer you encounter in home, university, or automobile. Classify each



Figure 3.3 The three basic types of heat exchangers.
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Figure 3.4 Heliflow compact counterflow heat exchanger.
(Photograph coutesy of Graham Manufacturing Co., Inc.,
Batavia, New York.)

according to type and note any special augmentation features.

The analysis of heat exchangers first becomes complicated when we
account for the fact that two flow streams change one another’s temper-
ature. It is to the problem of predicting an appropriate mean tempera-
ture difference that we address ourselves in Section 3.2. Section 3.3 then
presents a strategy to use when this mean cannot be determined initially.

3.2 Evaluation of the mean temperature difference
in a heat exchanger

Logarithmic mean temperature difference (LMTD)

To begin with, we take U to be a constant value. This is fairly reasonable
in compact single-phase heat exchangers. In larger exchangers, particu-
larly in shell-and-tube configurations and large condensers, U is apt to
vary with position in the exchanger and/or with local temperature. But



Figure 3.5 Typical commercial one-shell-pass, two-tube-pass
heat exchangers.
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Figure 3.6 Several commercial cross-flow heat exchangers.
(Photographs courtesy of Harrison Radiator Division, General
Motors Corporation.)
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Figure 3.7 Four typical heat exchanger configurations (contin-
ued on next page). (Drawings courtesy of the Tubular Exchan-
ger Manufacturers’ Association.)
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Figure 3.7 Continued

in situations in which U is fairly constant, we can deal with the varying
temperatures of the fluid streams by writing the overall heat transfer in
terms of a mean temperature difference between the two fluid streams:

Q = UA∆Tmean (3.1)

Our problem then reduces to finding the appropriate mean temperature
difference that will make this equation true. Let us do this for the simple
parallel and counterflow configurations, as sketched in Fig. 3.8.

The temperature of both streams is plotted in Fig. 3.8 for both single-
pass arrangements—the parallel and counterflow configurations—as a
function of the length of travel (or area passed over). Notice that, in the
parallel-flow configuration, temperatures tend to change more rapidly
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Figure 3.8 The temperature variation through single-pass
heat exchangers.

with position and less length is required. But the counterflow arrange-
ment achieves generally more complete heat exchange from one flow to
the other.

Figure 3.9 shows another variation on the single-pass configuration.
This is a condenser in which one stream flows through with its tempera-
ture changing, but the other simply condenses at uniform temperature.
This arrangement has some special characteristics, which we point out
shortly.

The determination of ∆Tmean for such arrangements proceeds as fol-
lows: the differential heat transfer within either arrangement (see Fig. 3.8)
is

dQ = U∆T dA = −(ṁcp)h dTh = ±(ṁcp)c dTc (3.2)

where the subscripts h and c denote the hot and cold streams, respec-
tively; the upper and lower signs are for the parallel and counterflow
cases, respectively; and dT denotes a change from left to right in the
exchanger. We give symbols to the total heat capacities of the hot and
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Figure 3.9 The temperature distribution through a condenser.

cold streams:

Ch ≡ (ṁcp)h W/K and Cc ≡ (ṁcp)c W/K (3.3)

Thus, for either heat exchanger, ∓ChdTh = CcdTc . This equation can
be integrated from the lefthand side, where Th = Thin and Tc = Tcin for
parallel flow or Th = Thin and Tc = Tcout for counterflow, to some arbitrary
point inside the exchanger. The temperatures inside are thus:

parallel flow: Th = Thin −
Cc
Ch

(Tc − Tcin) = Thin −
Q
Ch

counterflow: Th = Thin −
Cc
Ch

(Tcout − Tc) = Thin −
Q
Ch

(3.4)

where Q is the total heat transfer from the entrance to the point of inter-
est. Equations (3.4) can be solved for the local temperature differences:

∆Tparallel = Th − Tc = Thin −
(

1+ Cc
Ch

)
Tc + Cc

Ch
Tcin

∆Tcounter = Th − Tc = Thin −
(

1− Cc
Ch

)
Tc − Cc

Ch
Tcout

(3.5)
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Substitution of these in dQ = CcdTc = U∆T dA yields

UdA
Cc

∣∣∣∣
parallel

= dTc[
−

(
1+ Cc

Ch

)
Tc + Cc

Ch
Tcin + Thin

]
UdA
Cc

∣∣∣∣
counter

= dTc[
−

(
1− Cc

Ch

)
Tc − Cc

Ch
Tcout + Thin

] (3.6)

Equations (3.6) can be integrated across the exchanger:∫ A

0

U
Cc

dA =
∫ Tcout

Tc in

dTc
[−−−] (3.7)

If U and Cc can be treated as constant, this integration gives

parallel: ln



−

(
1+ Cc

Ch

)
Tcout +

Cc
Ch

Tcin + Thin

−
(

1+ Cc
Ch

)
Tcin +

Cc
Ch

Tcin + Thin


 = −UA

Cc

(
1+ Cc

Ch

)

counter: ln



−

(
1− Cc

Ch

)
Tcout −

Cc
Ch

Tcout + Thin

−
(

1− Cc
Ch

)
Tcin −

Cc
Ch

Tcout + Thin


 = −UA

Cc

(
1− Cc

Ch

)

(3.8)

If U were variable, the integration leading from eqn. (3.7) to eqns. (3.8)
is where its variability would have to be considered. Any such variability
of U can complicate eqns. (3.8) terribly. Presuming that eqns. (3.8) are
valid, we can simplify them with the help of the definitions of ∆Ta and
∆Tb, given in Fig. 3.8:

parallel: ln
[(1+ Cc/Ch)(Tcin − Tcout)+∆Tb

∆Tb

]
= −UA

(
1
Cc
+ 1
Ch

)

counter: ln
∆Ta

(−1+ Cc/Ch)(Tcin − Tcout)+∆Ta
= −UA

(
1
Cc
− 1
Ch

)
(3.9)

Conservation of energy (Qc = Qh) requires that

Cc
Ch

= −Thout − Thin

Tcout − Tcin

(3.10)
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Then eqn. (3.9) and eqn. (3.10) give

parallel: ln




∆Ta−∆Tb︷ ︸︸ ︷
(Tcin − Tcout)+ (Thout − Thin)+∆Tb

∆Tb




= ln
(
∆Ta
∆Tb

)
= −UA

(
1
Cc
+ 1
Ch

)

counter: ln
(

∆Ta
∆Tb −∆Ta +∆Ta

)
= ln

(
∆Ta
∆Tb

)
= −UA

(
1
Cc
− 1
Ch

)

(3.11)

Finally, we write 1/Cc = (Tcout − Tcin)/Q and 1/Ch = (Thin − Thout)/Q on
the right-hand side of either of eqns. (3.11) and get for either parallel or
counterflow,

Q = UA
(
∆Ta −∆Tb

ln(∆Ta/∆Tb)

)
(3.12)

The appropriate∆Tmean for use in eqn. (3.11) is thus the logarithmicmean
temperature difference (LMTD):

∆Tmean = LMTD ≡ ∆Ta −∆Tb
ln

(
∆Ta
∆Tb

) (3.13)

Example 3.1

The idea of a logarithmic mean difference is not new to us. We have
already encountered it in Chapter 2. Suppose that we had asked,
“What mean radius of pipe would have allowed us to compute the
conduction through the wall of a pipe as though it were a slab of
thickness L = ro − ri?” (see Fig. 3.10). To answer this, we compare

Q = kA
∆T
L
= 2πkl∆T

(
rmean

ro − ri

)

with eqn. (2.21):

Q = 2πkl∆T
1

ln(ro/ri)
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Figure 3.10 Calculation of the mean radius for heat conduc-
tion through a pipe.

It follows that

rmean = ro − ri
ln(ro/ri)

= logarithmic mean radius

Example 3.2

Suppose that the temperature difference on either end of a heat ex-
changer,∆Ta, and∆Tb, are equal. Clearly, the effective∆T must equal
∆Ta and ∆Tb in this case. Does the LMTD reduce to this value?

Solution. If we substitute ∆Ta = ∆Tb in eqn. (3.13), we get

LMTD = ∆Tb −∆Tb
ln(∆Tb/∆Tb)

= 0
0
= indeterminate

Therefore it is necessary to use L’Hospital’s rule:

limit
∆Ta→∆Tb

∆Ta −∆Tb
ln(∆Ta/∆Tb)

=
∂

∂∆Ta
(∆Ta −∆Tb)

∣∣∣∣
∆Ta=∆Tb

∂
∂∆Ta

ln
(
∆Ta
∆Tb

)∣∣∣∣∣
∆Ta=∆Tb

=
(

1
1/∆Ta

)∣∣∣∣∣
∆Ta=∆Tb

= ∆Ta = ∆Tb



§3.2 Evaluation of the mean temperature difference in a heat exchanger 107

It follows that the LMTD reduces to the intuitively obvious result in
the limit.

Example 3.3

Water enters the tubes of a small single-pass heat exchanger at 20◦C
and leaves at 40◦C. On the shell side, 25 kg/min of steam condenses at
60◦C. Calculate the overall heat transfer coefficient and the required
flow rate of water if the area of the exchanger is 12 m2. (The latent
heat, hfg, is 2358.7 kJ/kg at 60◦C.)

Solution.

Q = ṁcondensate · hfg

∣∣∣
60◦C

= 25(2358.7)
60

= 983 kJ/s

and with reference to Fig. 3.9, we can calculate the LMTD without
naming the exchanger “parallel” or “counterflow”, since the conden-
sate temperature is constant.

LMTD = (60− 20)− (60− 40)

ln
(

60− 20
60− 40

) = 28.85 K

Then

U = Q
A(LMTD)

= 983(1000)
12(28.85)

= 2839 W/m2K

and

ṁH2O = Q
cp∆T

= 983,000
4174(20)

= 11.78 kg/s

Extended use of the LMTD

Limitations. There are two basic limitations on the use of an LMTD. The
first is that it is restricted to the single-pass parallel and counterflow con-
figurations. This restriction can be overcome by adjusting the LMTD for
other configurations—a matter that we take up in the following subsec-
tion.
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Figure 3.11 A typical case of a heat exchanger in which U
varies dramatically.

The second limitation—our use of a constant value of U— is more
serious. The value of U must be negligibly dependent on T to complete
the integration of eqn. (3.7). Even if U ≠ fn(T), the changing flow con-
figuration and the variation of temperature can still give rise to serious
variations of U within a given heat exchanger. Figure 3.11 shows a typ-
ical situation in which the variation of U within a heat exchanger might
be great. In this case, the mechanism of heat exchange on the water side
is completely altered when the liquid is finally boiled away. If U were
uniform in each portion of the heat exchanger, then we could treat it as
two different exchangers in series.

However, the more common difficulty that we face is that of design-
ing heat exchangers in which U varies continuously with position within
it. This problem is most severe in large industrial shell-and-tube config-
urations1 (see, e.g., Fig. 3.5 or Fig. 3.12) and less serious in compact heat
exchangers with less surface area. If U depends on the location, analyses
such as we have just completed [eqn. (3.1) to eqn. (3.13)] must be done
using an average U defined as

∫A
0 UdA/A.

1Actual heat exchangers can have areas well in excess of 10,000 m2. Large power
plant condensers and other large exchangers are often remarkably big pieces of equip-
ment.



Figure 3.12 The heat exchange surface for a steam genera-
tor. This PFT-type integral-furnace boiler, with a surface area
of 4560 m2, is not particularly large. About 88% of the area
is in the furnace tubing and 12% is in the boiler (Photograph
courtesy of Babcock and Wilcox Co.)
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LMTD correction factor, F. Suppose that we have a heat exchanger in
which U can reasonably be taken constant, but one that involves such
configurational complications as multiple passes and/or cross-flow. In
such cases it is necessary to rederive the appropriate mean temperature
difference in the same way as we derived the LMTD. Each configuration
must be analyzed separately and the results are generally more compli-
cated than eqn. (3.13).

This task was undertaken on an ad hoc basis during the early twen-
tieth century. In 1940, Bowman, Mueller and Nagle [3.2] organized such
calculations for the common range of heat exchanger configurations. In
each case they wrote

Q = UA(LMTD) · F



Ttout − Ttin

Tsin − Ttin︸ ︷︷ ︸
P

,
Tsin − Tsout

Ttout − Ttin︸ ︷︷ ︸
R


 (3.14)

where Tt and Ts are temperatures of tube and shell flows, respectively.
The factor F is an LMTD correction that varies from unity to zero, depend-
ing on conditions. The dimensionless groups P and R have the following
physical significance:

• P is the relative influence of the overall temperature difference
(Tsin − Ttin) on the tube flow temperature. It must obviously be
less than unity.

• R, according to eqn. (3.10), equals the heat capacity ratio Ct/Cs .

• If one flow remains at constant temperature (as, for example, in
Fig. 3.9), then either P or R will equal zero. In this case the simple
LMTD will be the correct ∆Tmean and F must go to unity.

The factor F is defined in such a way that the LMTD should always be
calculated for the equivalent counterflow single-pass exchanger with the
same hot and cold temperatures. This is explained in Fig. 3.13.

Bowman et al. [3.2] summarized all the equations for F , in various con-
figurations, that had been dervied by 1940. They presented them graphi-
cally in not-very-accurate figures that have been widely copied. The TEMA
[3.1] version of these curves has been recalculated for shell-and-tube heat
exchangers, and it is more accurate. We include two of these curves in
Fig. 3.14(a) and Fig. 3.14(b). TEMA presents many additional curves for
more complex shell-and-tube configurations. Figures 3.14(c) and 3.14(d)
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Figure 3.13 The basis of the LMTD in a multipass exchanger,
prior to correction.

are the Bowman et al. curves for the simplest cross-flow configurations.
Gardner and Taborek [3.3] redeveloped Fig. 3.14(c) over a different range
of parameters. They also showed how Fig. 3.14(a) and Fig. 3.14(b) must
be modified if the number of baffles in a tube-in-shell heat exchanger is
large enough to make it behave like a series of cross-flow exchangers.

We have simplified Figs. 3.14(a) through 3.14(d) by including curves
only for R B 1. Shamsundar [3.4] noted that for R > 1, one may obtain F
using a simple reciprocal rule. He showed that so long as a heat exchan-
ger has a uniform heat transfer coefficient and the fluid properties are
constant,

F(P,R) = F(PR,1/R) (3.15)

Thus, if R is greater than unity, one need only evaluate F using PR in
place of P and 1/R in place of R.

Example 3.4

5.795 kg/s of oil flows through the shell side of a two-shell pass, four-



a. F for a one-shell-pass, four, six-, . . . tube-pass exchanger.

b. F for a two-shell-pass, four or more tube-pass exchanger.

Figure 3.14 LMTD correction factors, F , for multipass shell-
and-tube heat exchangers and one-pass cross-flow exchangers.
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c. F for a one-pass cross-flow exchanger with both passes unmixed.

d. F for a one-pass cross-flow exchanger with one pass mixed.

Figure 3.14 LMTD correction factors, F , for multipass shell-
and-tube heat exchangers and one-pass cross-flow exchangers.
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tube-pass oil cooler. The oil enters at 181◦C and leaves at 38◦C. Water
flows in the tubes, entering at 32◦C and leaving at 49◦C. In addition,
cpoil = 2282 J/kg·K and U = 416 W/m2K. Find how much area the
heat exchanger must have.

Solution.

LMTD = (Thin − Tcout)− (Thout − Tcin)

ln

(
Thin − Tcout

Thout − Tcin

)

= (181− 49)− (38− 32)

ln
(

181− 49
38− 32

) = 40.76 K

R = 181− 38
49− 32

= 8.412 P = 49− 32
181− 32

= 0.114

Since R > 1, we enter Fig. 3.14(b) using P = 8.412(0.114) = 0.959 and
R = 1/8.412 = 0.119 and obtain F = 0.92.2 It follows that:

Q = UAF(LMTD)
5.795(2282)(181− 38) = 416(A)(0.92)(40.76)

A = 121.2 m2

3.3 Heat exchanger effectiveness

We are now in a position to predict the performance of an exchanger once
we know its configuration and the imposed differences. Unfortunately,
we do not often know that much about a system before the design is
complete.

Often we begin with information such as is shown in Fig. 3.15. If
we sought to calculate Q in such a case, we would have to do so by
guessing an exit temperature such as to make Qh = Qc = Ch∆Th =
Cc∆Tc . Then we could calculate Q from UA(LMTD) or UAF (LMTD) and
check it againstQh. The answers would differ, so we would have to guess
new exit temperatures and try again.

Such problems can be greatly simplified with the help of the so-called
effectiveness-NTU method. This method was first developed in full detail

2Notice that, for a 1 shell-pass exchanger, these R and P lines do not quite intersect
[see Fig. 3.14(a)]. Therefore, one could not obtain these temperatures with any single-
shell exchanger.
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Figure 3.15 A design problem in which the LMTD cannot be
calculated a priori.

by Kays and London [3.5] in 1955, in a book titled Compact Heat Exchang-
ers. We should take particular note of the title. It is with compact heat
exchangers that the present method can reasonably be used, since the
overall heat transfer coefficient is far more likely to remain fairly uni-
form.

The heat exchanger effectiveness is defined as

ε ≡ Ch(Thin − Thout)
Cmin(Thin − Tcin)

= Cc(Tcout − Tcin)
Cmin(Thin − Tcin)

(3.16)

where Cmin is the smaller of Cc and Ch. The effectiveness can be inter-
preted as

ε = actual heat transferred
maximum heat that could possibly be

transferred from one stream to the other

It follows that

Q = εCmin(Thin − Tcin) (3.17)

A second definition that we will need was originally made by E.K.W.
Nusselt, whom we meet again in Part III. This is the number of transfer
units (NTU):

NTU ≡ UA
Cmin

(3.18)
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This dimensionless group can be viewed as a comparison of the heat
capacity of the heat exchanger, expressed in W/◦C, with the heat capacity
of the flow.

We can immediately reduce the parallel-flow result from eqn. (3.9) to
the following equation, based on these definitions:

−
(
Cmin

Cc
+ Cmin

Ch

)
NTU = ln

[
−

(
1+ Cc

Ch

)
ε
Cmin

Cc
+ 1

]
(3.19)

We solve this for ε and, regardless of whether Cmin is associated with the
hot or cold flow, obtain for the parallel single-pass heat exchanger:

ε ≡ 1− exp [−(1+ Cmin/Cmax)NTU]
1+ Cmin/Cmax

= fn
(
Cmin

Cmax
,NTU only

)
(3.20)

The corresponding expression for the counterflow case is

ε = 1− exp [−(1− Cmin/Cmax)NTU]
1− (Cmin/Cmax) exp[−(1− Cmin/Cmax)NTU]

(3.21)

Equations (3.20) and (3.21) are given in graphical form in Fig. 3.16.
Similar calculations give the effectiveness for the other heat exchanger
configurations (see [3.5]) and we include some of the resulting effective-
ness plots in Fig. 3.17. To see how the effectiveness can conveniently be
used to complete a design, consider the following two examples.

Example 3.5

Consider the following parallel-flow heat exchanger specification:

cold flow enters at 40◦C: Cc = 20,000 W/K

hot flow enters at 150◦C: Ch = 10,000 W/K

A = 30 m2 U = 500 W/m2K.

Determine the heat transfer and the exit temperatures.

Solution. In this case we do not know the exit temperatures, so it
is not possible to calculate the LMTD. Instead, we can go either to the
parallel-flow effectiveness chart in Fig. 3.16 or to eqn. (3.20), using

NTU = UA
Cmin

= 500(30)
10,000

= 1.5

Cmin

Cmax
= 0.5



§3.3 Heat exchanger effectiveness 117

Figure 3.16 The effectiveness of parallel and counterflow heat
exchangers. (Data provided by A.D. Krauss.)

and we obtain ε = 0.596. Now from eqn. (3.17), we find that

Q = ε Cmin(Thin − Tcin) = 0.596(10,000)(110)
= 655,600 W = 655.6 kW

Finally, from energy balances such as are expressed in eqn. (3.4), we
get

Thout = Thin −
Q
Ch

= 150− 655,600
10,000

= 84.44◦C

Tcout = Tcin +
Q
Cc

= 40+ 655,600
20,000

= 72.78◦C

Example 3.6

Suppose that we had the same kind of exchanger as we considered
in Example 3.5, but that the area remained unspecified as a design
variable. Then calculate the area that would bring the hot flow out at
90◦C.

Solution. Once the exit cold fluid temperature is known, the prob-
lem can be solved with equal ease by either the LMTD or the effective-



Figure 3.17 The effectiveness of some other heat exchanger
configurations. (Data provided by A.D. Krauss.)
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ness approach.

Tcout = Tcin +
Ch
Cc

(Thin − Thout) = 40+ 1
2
(150− 90) = 70◦C

Then, using the effectiveness method,

ε = Ch(Thin − Thout)
Cmin(Thin − Tcin)

= 10,000(150− 90)
10,000(150− 40)

= 0.5455

so from Fig. 3.16 we read NTU �1.15 = UA/Cmin. Thus

A = 10,000(1.15)
500

= 23.00 m2

We could also have calculated the LMTD:

LMTD = (150− 40)− (90− 70)
ln(110/20)

= 52.79 K

so from Q = UA(LMTD), we obtain

A = 10,000(150− 90)
500(52.79)

= 22.73 m2

The answers differ by 1%, which reflects graph reading inaccuracy.

When the temperature of either fluid in a heat exchanger is uniform,
the problem of analyzing heat transfer is greatly simplified. We have
already noted that no F -correction is needed to adjust the LMTD in this
case. The reason is that when only one fluid changes in temperature, the
configuration of the exchanger becomes irrelevant. Any such exchanger
is equivalent to a single fluid stream flowing through an isothermal pipe.3

Since all heat exchangers are equivalent in this case, it follows that
the equation for the effectiveness in any configuration must reduce to
the same common expression as Cmax approaches infinity. The volumet-
ric heat capacity rate might approach infinity because the flow rate or
specific heat is very large, or it might be infinite because the flow is ab-
sorbing or giving up latent heat (as in Fig. 3.9). The limiting effectiveness
expression can also be derived directly from energy-balance considera-
tions (see Problem 3.11), but we obtain it here by letting Cmax → ∞ in
either eqn. (3.20) or eqn. (3.21). The result is

lim
Cmax→∞

ε = 1− e−NTU (3.22)

3We make use of this notion in Section 7.4, when we analyze heat convection in pipes
and tubes.
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Eqn. (3.22) defines the curve for Cmin/Cmax = 0 in all six of the effective-
ness graphs in Fig. 3.16 and Fig. 3.17.

3.4 Heat exchanger design

The preceding sections provided means for designing heat exchangers
that generally work well in the design of smaller exchangers—typically,
the kind of compact cross-flow exchanger used in transportation equip-
ment. Larger shell-and-tube exchangers pose two kinds of difficulty in
relation to U . The first is the variation of U through the exchanger, which
we have already discussed. The second difficulty is that convective heat
transfer coefficients are very hard to predict for the complicated flows
that move through a baffled shell.

We shall achieve considerable success in using analysis to predict h’s
for various convective flows in Part III. The determination ofh in a baffled
shell remains a problem that cannot be solved analytically. Instead, it
is normally computed with the help of empirical correlations or with
the aid of large commercial computer programs that include relevant
experimental correlations. The problem of predicting h when the flow is
boiling or condensing is even more complicated. A great deal of research
is at present aimed at perfecting such empirical predictions.

Apart from predicting heat transfer, a host of additional considera-
tions must be addressed in designing heat exchangers. The primary ones
are the minimization of pumping power and the minimization of fixed
costs.

The pumping power calculation, which we do not treat here in any
detail, is based on the principles discussed in a first course on fluid me-
chanics. It generally takes the following form for each stream of fluid
through the heat exchanger:

pumping power =
(
ṁ

kg
s

)(
∆p
ρ

N/m2

kg/m3

)
= ṁ∆p

ρ

(
N·m

s

)

= ṁ∆p
ρ

(W)

(3.23)

where ṁ is the mass flow rate of the stream, ∆p the pressure drop of
the stream as it passes through the exchanger, and ρ the fluid density.

Determining the pressure drop can be relatively straightforward in a
single-pass pipe-in-tube heat exchanger or extremely difficulty in, say, a
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shell-and-tube exchanger. The pressure drop in a straight run of pipe,
for example, is given by

∆p = f
(
L
Dh

) ρu2
av

2
(3.24)

where L is the length of pipe, Dh is the hydraulic diameter, uav is the
mean velocity of the flow in the pipe, and f is the Darcy-Weisbach friction
factor (see Fig. 7.6).

Optimizing the design of an exchanger is not just a matter of making
∆p as small as possible. Often, heat exchange can be augmented by em-
ploying fins or roughening elements in an exchanger. (We discuss such
elements in Chapter 4; see, e.g., Fig. 4.6). Such augmentation will invari-
ably increase the pressure drop, but it can also reduce the fixed cost of
an exchanger by increasing U and reducing the required area. Further-
more, it can reduce the required flow rate of, say, coolant, by increasing
the effectiveness and thus balance the increase of ∆p in eqn. (3.23).

To better understand the course of the design process, faced with
such an array of trade-offs of advantages and penalties, we follow Ta-
borek’s [3.6] list of design considerations for a large shell-and-tube ex-
changer:

• Decide which fluid should flow on the shell side and which should
flow in the tubes. Normally, this decision will be made to minimize
the pumping cost. If, for example, water is being used to cool oil,
the more viscous oil would flow in the shell. Corrosion behavior,
fouling, and the problems of cleaning fouled tubes also weigh heav-
ily in this decision.

• Early in the process, the designer should assess the cost of the cal-
culation in comparison with:

(a) The converging accuracy of computation.

(b) The investment in the exchanger.

(c) The cost of miscalculation.

• Make a rough estimate of the size of the heat exchanger using, for
example, U values from Table 2.2 and/or anything else that might
be known from experience. This serves to circumscribe the sub-
sequent trial-and-error calculations; it will help to size flow rates
and to anticipate temperature variations; and it will help to avoid
subsequent errors.
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• Evaluate the heat transfer, pressure drop, and cost of various ex-
changer configurations that appear reasonable for the application.
This is usually done with large-scale computer programs that have
been developed and are constantly being improved as new research
is included in them.

The computer runs suggested by this procedure are normally very com-
plicated and might typically involve 200 successive redesigns, even when
relatively efficient procedures are used.

However, most students of heat transfer will not have to deal with
such designs. Many, if not most, will be called upon at one time or an-
other to design smaller exchangers in the range 0.1 to 10 m2. The heat
transfer calculation can usually be done effectively with the methods de-
scribed in this chapter. Some useful sources of guidance in the pressure
drop calculation are Kern’s classic treatment, Process Heat Transfer [3.7],
the TEMA design book [3.1], Perry’s Chemical Engineers’ Handbook [3.8],
and some of the other references at the end of this chapter.

In such a calculation, we start off with one fluid to heat and one to
cool. Perhaps we know the flow heat capacity rates (Cc and Ch), certain
temperatures, and/or the amount of heat that is to be transferred. The
problem can be annoyingly wide open, and nothing can be done until
it is somehow delimited. The normal starting point is the specification
of an exchanger configuration, and to make this choice one needs ex-
perience. The descriptions in this chapter provide a kind of first level
of experience. References [3.5, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12] provide a
second level. Manufacturer’s catalogues are an excellent source of more
advanced information.

Once the exchanger configuration is set, U will be approximately set
and the area becomes the basic design variable. The design can then
proceed along the lines of Section 3.2 or 3.3. If it is possible to begin
with a complete specification of inlet and outlet temperatures,

Q︸︷︷︸
C∆T

= U︸︷︷︸
known

AF(LMTD)︸ ︷︷ ︸
calculable

Then A can be calculated and the design completed. Usually, a reevalu-
ation of U and some iteration of the calculation is needed.

More often, we begin without full knowledge of the outlet tempera-
tures. In such cases, we normally have to invent an appropriate trial-and-
error method to get the area and a more complicated sequence of trials if
we seek to optimize pressure drop and cost by varying the configuration



Problems 123

as well. If the C ’s are design variables, the U will change significantly,
because h’s are generally velocity-dependent and more iteration will be
needed.

We conclude Part I of this book facing a variety of incomplete issues.
Most notably, we face a serious need to be able to determine convective
heat transfer coefficients. The prediction ofh depends on a knowledge of
heat conduction. We therefore turn, in Part II, to a much more thorough
study of heat conduction analysis than was undertaken in Chapter 2.
In addition to setting up the methodology ultimately needed to predict
h’s, Part II will also deal with many other issues that have great practical
importance in their own right.

Problems

3.1 Can you have a cross-flow exchanger in which both flows are
mixed? Discuss.

3.2 Find the appropriate mean radius, r , that will make
Q = kA(r)∆T/(ro−ri), valid for the one-dimensional heat con-
duction through a thick spherical shell, where A(r) = 4πr2 (cf.
Example 3.1).

3.3 Rework Problem 2.14, using the methods of Chapter 3.

3.4 2.4 kg/s of a fluid have a specific heat of 0.81 kJ/kg·K enter a
counterflow heat exchanger at 0◦C and are heated to 400◦C by
2 kg/s of a fluid having a specific heat of 0.96 kJ/kg·K entering
the unit at 700◦C. Show that to heat the cooler fluid to 500◦C,
all other conditions remaining unchanged, would require the
surface area for a heat transfer to be increased by 87.5%.

3.5 A cross-flow heat exchanger with both fluids unmixed is used
to heat water (cp = 4.18 kJ/kg·K) from 40◦C to 80◦C, flowing at
the rate of 1.0 kg/s. What is the overall heat transfer coefficient
if hot engine oil (cp = 1.9 kJ/kg·K), flowing at the rate of 2.6
kg/s, enters at 100◦C? The heat transfer area is 20 m2. (Note
that you can use either an effectiveness or an LMTD method. It
would be wise to use both as a check.)

3.6 Saturated non-oil-bearing steam at 1 atm enters the shell pass
of a two-tube-pass shell condenser with thirty 20 ft tubes in
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each tube pass. They are made of schedule 160, ¾ in. steel
pipe (nominal diameter). A volume flow rate of 0.01 ft3/s of
water entering at 60◦F enters each tube. The condensing heat
transfer coefficient is 2000 Btu/h·ft2·◦F, and we calculate h =
1380 Btu/h·ft2·◦F for the water in the tubes. Estimate the exit
temperature of the water and mass rate of condensate [ṁc �
8393 lbm/h.]

3.7 Consider a counterflow heat exchanger that must cool 3000
kg/h of mercury from 150◦F to 128◦F. The coolant is 100 kg/h
of water, supplied at 70◦F. If U is 300 W/m2K, complete the
design by determining reasonable value for the area and the
exit-water temperature. [A = 0.147 m2.]

3.8 An automobile air-conditioner gives up 18 kW at 65 km/h if
the outside temperature is 35◦C. The refrigerant temperature
is constant at 65◦C under these conditions, and the air rises
6◦C in temperature as it flows across the heat exchanger tubes.
The heat exchanger is of the finned-tube type shown in Fig. 3.6b,
with U � 200 W/m2K. If U ∼ (air velocity)0.7 and the mass flow
rate increases directly with the velocity, plot the percentage
reduction of heat transfer in the condenser as a function of air
velocity between 15 and 65 km/h.

3.9 Derive eqn. (3.21).

3.10 Derive the infinite NTU limit of the effectiveness of parallel and
counterflow heat exchangers at several values of Cmin/Cmax.
Use common sense and the First Law of Thermodynamics, and
refer to eqn. (3.2) and eqn. (3.21) only to check your results.

3.11 Derive the equation ε = (NTU, Cmin/Cmax) for the heat exchan-
ger depicted in Fig. 3.9.

3.12 A single-pass heat exchanger condenses steam at 1 atm on the
shell side and heats water from 10◦C to 30◦C on the tube side
with U = 2500 W/m2K. The tubing is thin-walled, 5 cm in di-
ameter, and 2 m in length. (a) Your boss asks whether the
exchanger should be counterflow or parallel-flow. How do you
advise her? Evaluate: (b) the LMTD; (c) ṁH2O; (d) ε. [ε �0.222.]
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3.13 Air at 2 kg/s and 27◦C and a stream of water at 1.5 kg/s and
60◦C each enter a heat exchanger. Evaluate the exit tempera-
tures if A = 12 m2, U = 185 W/m2K, and:

a. The exchanger is parallel flow;

b. The exchanger is counterflow [Thout � 54.0◦C.];

c. The exchanger is cross-flow, one stream mixed;

d. The exchanger is cross-flow, neither stream mixed.
[Thout = 53.62◦C.]

3.14 Air at 0.25 kg/s and 0◦C enters a cross-flow heat exchanger.
It is to be warmed to 20◦C by 0.14 kg/s of air at 50◦C. The
streams are unmixed. As a first step in the design process,
plot U against A and identify the approximate range of area
for the exchanger.

3.15 A particular two shell-pass, four tube-pass heat exchanger uses
20 kg/s of river water at 10◦C on the shell side to cool 8 kg/s of
processed water from 80◦C to 25◦C on the tube side. At what
temperature will the coolant be returned to the river? If U is
800 W/m2K, how large must the exchanger be?

3.16 A particular cross-flow process heat exchanger operates with
the fluid mixed on one side only. When it is new, U = 2000
W/m2K, Tcin = 25◦C, Tcout = 80◦C, Thin = 160◦C, and Thout = 70◦C.
After 6 months of operation, the plant manager reports that the
hot fluid is only being cooled to 90◦C and that he is suffering a
30% reduction in total heat transfer. What is the fouling resis-
tance after 6 months of use? (Assume no reduction of cold-side
flow rate by fouling.)

3.17 Water at 15◦C is supplied to a one-shell-pass, two-tube-pass
heat exchanger to cool 10 kg/s of liquid ammonia from 120◦C
to 40◦C. You anticipate a U on the order of 1500 W/m2K when
the water flows in the tubes. If A is to be 90 m2, choose the
correct flow rate of water.

3.18 Suppose that the heat exchanger in Example 3.5 had been a two
shell-pass, four tube-pass exchanger with the hot fluid moving
in the tubes. (a) What would be the exit temperature in this
case? [Tcout = 75.09◦C.] (b) What would be the area if we wanted
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the hot fluid to leave at the same temperature that it does in
the example?

3.19 Plot the maximum tolerable fouling resistance as a function
of Unew for a counterflow exchanger, with given inlet temper-
atures, if a 30% reduction in U is the maximum that can be
tolerated.

3.20 Water at 0.8 kg/s enters the tubes of a two-shell-pass, four-
tube-pass heat exchanger at 17◦C and leaves at 37◦C. It cools
0.5 kg/s of air entering the shell at 250◦C with U = 432 W/m2K.
Determine: (a) the exit air temperature; (b) the area of the heat
exchanger; and (c) the exit temperature if, after some time,
the tubes become fouled with Rf = 0.0005 m2K/W. [(c) Tairout =
140.5◦C.]

3.21 You must cool 78 kg/min of a 60%-by-mass mixture of glycerin
in water from 108◦C to 50◦C using cooling water available at
7◦C. Design a one-shell-pass, two-tube-pass heat exchanger if
U = 637 W/m2K. Explain any design decision you make and
report the area, TH2Oout , and any other relevant features.

3.22 A mixture of 40%-by-weight glycerin, 60% water, enters a smooth
0.113 m I.D. tube at 30◦C. The tube is kept at 50◦C, and ṁmixture

= 8 kg/s. The heat transfer coefficient inside the pipe is 1600
W/m2K. Plot the liquid temperature as a function of position
in the pipe.

3.23 Explain in physical terms why all effectiveness curves Fig. 3.16
and Fig. 3.17 have the same slope as NTU → 0. Obtain this
slope from eqns. (3.20) and (3.21).

3.24 You want to cool air from 150◦C to 60◦C but you cannot af-
ford a custom-built heat exchanger. You find a used cross-flow
exchanger (both fluids unmixed) in storage. It was previously
used to cool 136 kg/min of NH3 vapor from 200◦C to 100◦C us-
ing 320 kg/min of water at 7◦C; U was previously 480 W/m2K.
How much air can you cool with this exchanger, using the same
water supply, if U is approximately unchanged? (Actually, you
would have to modify U using the methods of Chapters 6 and
7 once you had the new air flow rate, but that is beyond our
present scope.)
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3.25 A one tube-pass, one shell-pass, parallel-flow, process heat ex-
changer cools 5 kg/s of gaseous ammonia entering the shell
side at 250◦C and boils 4.8 kg/s of water in the tubes. The wa-
ter enters subcooled at 27◦C and boils when it reaches 100◦C.
U = 480 W/m2K before boiling begins and 964 W/m2K there-
after. The area of the exchanger is 45 m2, and hfg for water is
2.257×106 J/kg. Determine the quality of the water at the exit.

3.26 0.72 kg/s of superheated steam enters a crossflow heat exchan-
ger at 240◦C and leaves at 120◦C. It heats 0.6 kg/s of water
entering at 17◦C. U = 612 W/m2K. By what percentage will the
area differ if a both-fluids-unmixed exchanger is used instead
of a one-fluid-unmixed exchanger? [−1.8%]

3.27 Compare values of F from Fig. 3.14(c) and Fig. 3.14(d) for the
same conditions of inlet and outlet temperatures. Is the one
with the higher F automatically the more desirable exchanger?
Discuss.

3.28 Compare values of ε for the same NTU andCmin/Cmax in parallel
and counterflow heat exchangers. Is the one with the higher ε
automatically the more desirable exchanger? Discuss.

3.29 The irreversibility rate of a process is equal to the rate of en-
tropy production times the lowest absolute sink temperature
accessible to the process. Calculate the irreversibility (or lost
work) for the heat exchanger in Example 3.4. What kind of con-
figuration would reduce the irreversibility, given the same end
temperatures.

3.30 Plot Toil and TH2O as a function of position in a very long coun-
terflow heat exchanger where water enters at 0◦C, with CH2O =
460 W/K, and oil enters at 90◦C, with Coil = 920 W/·C, U = 742
W/m2K, and A = 10 m2. Criticize the design.

3.31 Liquid ammonia at 2 kg/s is cooled from 100◦C to 30◦C in the
shell side of a two shell-pass, four tube-pass heat exchanger by
3 kg/s of water at 10◦C. When the exchanger is new, U = 750
W/m2K. Plot the exit ammonia temperature as a function of the
increasing tube fouling factor.

3.32 A one shell-pass, two tube-pass heat exchanger cools 0.403
kg/s of methanol from 47◦C to 7◦C on the shell side. The



128 Chapter 3: Heat exchanger design

coolant is 2.2 kg/s of Freon 12, entering the tubes at −33◦C,
with U = 538 W/m2K. A colleague suggests that this arrange-
ment wastes Freon. She thinks you could do almost as well if
you cut the Freon flow rate all the way down to 0.8 kg/s. Cal-
culate the new methanol outlet temperature that would result
from this flow rate, and evaluate her suggestion.

3.33 The factors dictating the heat transfer coefficients in a certain
two shell-pass, four tube-pass heat exchanger are such that U
increases as (ṁshell)0.6. The exchanger cools 2 kg/s of air from
200◦C to 40◦C using 4.4 kg/s of water at 7◦C, and U = 312
W/m2K under these circumstances. If we double the air flow,
what will its temperature be leaving the exchanger? [Tairout =
61◦C.]

3.34 A flow rate of 1.4 kg/s of water enters the tubes of a two-shell-
pass, four-tube-pass heat exchanger at 7◦C. A flow rate of 0.6
kg/s of liquid ammonia at 100◦C is to be cooled to 30◦C on
the shell side; U = 573 W/m2K. (a) How large must the heat
exchanger be? (b) How large must it be if, after some months, a
fouling factor of 0.0015 will build up in the tubes, and we still
want to deliver ammonia at 30◦C? (c) If we make it large enough
to accommodate fouling, to what temperature will it cool the
ammonia when it is new? (d) At what temperature does water
leave the new, enlarged exchanger? [(d) TH2O = 49.9◦C.]

3.35 Both C ’s in a parallel-flow heat exchanger are equal to 156 W/K,
U = 327 W/m2K and A = 2 m2. The hot fluid enters at 140◦C
and leaves at 90◦C. The cold fluid enters at 40◦C. If both C ’s
are halved, what will be the exit temperature of the hot fluid?

3.36 A 1.68 ft2 cross-flow heat exchanger with one fluid mixed con-
denses steam at atmospheric pressure (h = 2000 Btu/h·ft2·◦F)
and boils methanol (Tsat = 170◦F and h = 1500 Btu/h·ft2·◦F) on
the other side. Evaluate U (neglecting resistance of the metal),
LMTD, F , NTU, ε, and Q.

3.37 Eqn. (3.21) is troublesome whenCmin/Cmax = 1. Develop a work-
ing equation for ε in this case. Compare it with Fig. 3.16.

3.38 The effectiveness of a cross-flow exchanger with neither fluid
mixed can be calculated from the following approximate for-
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mula:

ε = 1− exp
[

exp(−NTU0.78r)− 1](NTU0.22/r)
]

where r ≡ Cmin/Cmax. How does this compare with correct
values?

3.39 Calculate the area required in a two-tube-pass, one-shell-pass
condenser that is to condense 106 kg/h of steam at 40◦C using
water at 17◦C. Assume that U = 4700 W/m2K, the maximum
allowable temperature rise of the water is 10◦C, and hfg = 2406
kJ/kg.

3.40 An engineer wants to divert 1 gal/min of water at 180◦F from
his car radiator through a small cross-flow heat exchanger with
neither flow mixed, to heat 40◦F water to 140◦F for shaving
when he goes camping. If he produces a pint per minute of hot
water, what will be the area of the exchanger and the tempera-
ture of the returning radiator coolant if U = 720 W/m2K?

References

[3.1] Tubular Exchanger Manufacturer’s Association. Standards of
Tubular Exchanger Manufacturer’s Association. New York, 4th and
6th edition, 1959 and 1978.

[3.2] R. A. Bowman, A. C. Mueller, and W. M. Nagle. Mean temperature
difference in design. Trans. ASME, 62:283–294, 1940.

[3.3] K. Gardner and J. Taborek. Mean temperature difference: A reap-
praisal. AIChE J., 23(6):770–786, 1977.

[3.4] N. Shamsundar. A property of the log-mean temperature-
difference correction factor. Mechanical Engineering News, 19(3):
14–15, 1982.

[3.5] W. M. Kays and A. L. London. Compact Heat Exchangers. McGraw-
Hill Book Company, New York, 3rd edition, 1984.

[3.6] J. Taborek. Evolution of heat exchanger design techniques. Heat
Transfer Engineering, 1(1):15–29, 1979.



130 Chapter 3: Heat exchanger design

[3.7] D. Q. Kern. Process Heat Transfer. McGraw-Hill Book Company,
New York, 1950.

[3.8] R. H. Perry, D. W. Green, and J. Q. Maloney, editors. Perry’s Chem-
ical Engineers’ Handbook. McGraw-Hill Book Company, New York,
7th edition, 1997.

[3.9] A. P. Fraas. Heat Exchanger Design. John Wiley & Sons, Inc., New
York, 2nd edition, 1989.

[3.10] D. M. Considine. Energy Technology Handbook. McGraw-Hill Book
Company, New York, 1975.

[3.11] G. F. Hewitt, editor. Heat Exchanger Design Handbook 1998. Begell
House, New York, 1998.

[3.12] R.K. Shah and D.P. Sekulic. Heat exchangers. In W. M. Rohsenow,
J. P. Hartnett, and Y. I. Cho, editors, Handbook of Heat Transfer,
chapter 17. McGraw-Hill, New York, 3rd edition, 1998.



Part II

Analysis of Heat Conduction

131





4. Analysis of heat conduction and
some steady one-dimensional
problems

The effects of heat are subject to constant laws which cannot be discovered
without the aid of mathematical analysis. The object of the theory which
we are about to explain is to demonstrate these laws; it reduces all physical
researches on the propagation of heat to problems of the calculus whose
elements are given by experiment.

The Analytical Theory of Heat, J. Fourier

4.1 The well-posed problem

The heat diffusion equation was derived in Section 2.1 and some atten-
tion was given to its solution. Before we go further with heat conduction
problems, we must describe how to state such problems so they can re-
ally be solved. This is particularly important in approaching the more
complicated problems of transient and multidimensional heat conduc-
tion that we have avoided up to now.

A well-posed heat conduction problem is one in which all the relevant
information needed to obtain a unique solution is stated. A well-posed
and hence solvable heat conduction problem will always read as follows:

Find T(x,y, z, t) such that:

1.

∇ · (k∇T)+ q̇ = ρc
∂T
∂t

for 0 < t < T (where T can �→ ∞), and for (x,y, z) belonging to

133
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some region, R, which might extend to infinity.1

2. T = Ti(x,y, z) at t = 0

This is called an initial condition, or i.c.

(a) Condition 1 above is not imposed at t = 0.

(b) Only one i.c. is required. However,

(c) The i.c. is not needed:

i. In the steady-state case: ∇ · (k∇T)+ q̇ = 0.

ii. For “periodic” heat transfer, where q̇ or the boundary con-
ditions vary periodically with time, and where we ignore
the starting transient behavior.

3. T must also satisfy two boundary conditions, or b.c.’s, for each co-
ordinate. The b.c.’s are very often of three common types.

(a) Dirichlet conditions, or b.c.’s of the first kind :

T is specified on the boundary of R for t > 0. We saw such
b.c.’s in Examples 2.1, 2.2, and 2.5.

(b) Neumann conditions, or b.c.’s of the second kind :

The derivative of T normal to the boundary is specified on the
boundary of R for t > 0. Such a condition arises when the heat
flux, k(∂T/∂x), is specified on a boundary or when , with the
help of insulation, we set ∂T/∂x equal to zero.2

(c) b.c.’s of the third kind :

A derivative of T in a direction normal to a boundary is propor-
tional to the temperature on that boundary. Such a condition
most commonly arises when convection occurs at a boundary,
and it is typically expressed as

−k ∂T
∂x

∣∣∣∣
bndry

= h(T − T∞)bndry

when the body lies to the left of the boundary on the x-coor-
dinate. We have already used such a b.c. in Step 4 of Example
2.6, and we have discussed it in Section 1.3 as well.

1(x,y, z) might be any coordinates describing a position �r : T(x,y, z, t) = T(�r , t).
2Although we write ∂T/∂x here, we understand that this might be ∂T/∂z, ∂T/∂r ,

or any other derivative in a direction locally normal to the surface on which the b.c. is
specified.
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Figure 4.1 The transient cooling of a body as it might occur,
subject to boundary conditions of the first, second, and third
kinds.

This list of b.c.’s is not complete, by any means, but it includes a great
number of important cases.

Figure 4.1 shows the transient cooling of body from a constant initial
temperature, subject to each of the three b.c.’s described above. Notice
that the initial temperature distribution is not subject to the boundary
condition, as pointed out previously under 2(a).

The eight-point procedure that was outlined in Section 2.2 for solving
the heat diffusion equation was contrived in part to assure that a problem
will meet the preceding requirements and will be well posed.

4.2 The general solution

Once the heat conduction problem has been posed properly, the first step
in solving it is to find the general solution of the heat diffusion equation.
We have remarked that this is usually the easiest part of the problem.
We next consider some examples of general solutions.
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One-dimensional steady heat conduction

Problem 4.1 emphasizes the simplicity of finding the general solutions of
linear ordinary differential equations, by asking for a table of all general
solutions of one-dimensional heat conduction problems. We shall work
out some of those results to show what is involved. We begin the heat
diffusion equation with constant k and q̇:

∇2T + q̇
k
= 1
α
∂T
∂t

(2.11)

Cartesian coordinates: Steady conduction in the y-direction. Equation
(2.11) reduces as follows:

∂2T
∂x2︸ ︷︷ ︸
=0

+∂
2T
∂y2

+ ∂2T
∂z2︸ ︷︷ ︸
=0

+ q̇
k
= 1

α
∂T
∂t︸ ︷︷ ︸

= 0, since steady

Therefore,

d2T
dy2

= − q̇
k

which we integrate twice to get

T = − q̇
2k

y2 + C1y + C2

or, if q̇ = 0,

T = C1y + C2

Cylindrical coordinates with a heat source: Tangential conduction.
This time, we look at the heat flow that results in a ring when two points
are held at different temperatures. We now express eqn. (2.11) in cylin-
drical coordinates with the help of eqn. (2.13):

1
r
∂
∂r

(
r
∂T
∂r

)
︸ ︷︷ ︸

=0

+ 1
r2

∂2T
∂φ2︸ ︷︷ ︸

r=constant

+ ∂2T
∂z2︸ ︷︷ ︸
=0

+ q̇
k
= 1

α
∂T
∂t︸ ︷︷ ︸

= 0, since steady

Two integrations give

T = −r
2q̇

2k
φ2 + C1φ+ C2 (4.1)

This would describe, for example, the temperature distribution in the
thin ring shown in Fig. 4.2. Here the b.c.’s might consist of temperatures
specified at two angular locations, as shown.
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Figure 4.2 One-dimensional heat conduction in a ring.

T = T(t only)

If T is spatially uniform, it can still vary with time. In such cases

∇2T︸ ︷︷ ︸
=0

+ q̇
k
= 1
α
∂T
∂t

and ∂T/∂t becomes an ordinary derivative. Then, since α = k/ρc,

dT
dt

= q̇
ρc

(4.2)

This result is consistent with the lumped-capacity solution described in
Section 1.3. If the Biot number is low and internal resistance is unimpor-
tant, the convective removal of heat from the boundary of a body can be
prorated over the volume of the body and interpreted as

q̇effective = −h(Tbody − T∞)A
volume

W/m3 (4.3)

and the heat diffusion equation for this case, eqn. (4.2), becomes

dT
dt

= − hA
ρcV

(T − T∞) (4.4)

The general solution in this situation was given in eqn. (1.21). [A partic-
ular solution was also written in eqn. (1.22).]
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Separation of variables: A general solution of multidimensional
problems

Suppose that the physical situation permits us to throw out all but one of
the spatial derivatives in a heat diffusion equation. Suppose, for example,
that we wish to predict the transient cooling in a slab as a function of
the location within it. If there is no heat generation, the heat diffusion
equation is

∂2T
∂x2

= 1
α
∂T
∂t

(4.5)

A common trick is to ask: “Can we find a solution in the form of a product
of functions of t and x: T = T (t) · X(x)?” To find the answer, we
substitute this in eqn. (4.5) and get

X′′T = 1
α
T ′X (4.6)

where each prime denotes one differentiation of a function with respect
to its argument. Thus T ′ = dT/dt and X′′ = d2X/dx2. Rearranging
eqn. (4.6), we get

X′′
X = 1

α
T ′

T (4.7a)

This is an interesting result in that the left-hand side depends only
upon x and the right-hand side depends only upon t. Thus, we set both
sides equal to the same constant, which we call −λ2, instead of, say, λ,
for reasons that will be clear in a moment:

X′′
X = 1

α
T ′

T = −λ2 a constant (4.7b)

It follows that the differential eqn. (4.7a) can be resolved into two ordi-
nary differential equations:

X′′ = −λ2X and T ′ = −αλ2T (4.8)

The general solution of both of these equations are well known and
are among the first ones dealt with in any study of differential equations.
They are:

X(x) = A sinλx + B cosλx for λ ≠ 0
X(x) = Ax + B for λ = 0

(4.9)
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and

T (t) = Ce−αλ2t for λ ≠ 0
T (t) = C for λ = 0

(4.10)

where we use capital letters to denote constants of integration. [In ei-
ther case, these solutions can be verified by substituting them back into
eqn. (4.8).] Thus the general solution of eqn. (4.5) can indeed be written
in the form of a product, and that product is

T = XT = e−αλ2t(D sinλx + E cosλx) for λ ≠ 0
T = XT = Dx + E for λ = 0

(4.11)

The usefulness of this result depends on whether or not it can be fit
to the b.c.’s and the i.c. In this case, we made the function X(t) take the
form of sines and cosines (instead of exponential functions) by placing
a minus sign in front of λ2. The sines and cosines make it possible to fit
the b.c.’s using Fourier series methods. These general methods are not
developed in this book; however, a complete Fourier series solution is
presented for one problem in Section 5.3.

The preceding simple methods for obtaining general solutions of lin-
ear partial d.e.’s is called the method of separation of variables. It can be
applied to all kinds of linear d.e.’s. Consider, for example, two-dimen-
sional steady heat conduction without heat sources:

∂2T
∂x2

+ ∂2T
∂y2

= 0 (4.12)

Set T = XY and get

X′′
X = −Y

′′

Y = −λ2

where λ can be an imaginary number. Then

X = A sinλx + B cosλx

Y = Ceλy +De−λy


 for λ ≠ 0

X = Ax + B
Y = Cy +D

}
for λ = 0

The general solution is

T = (E sinλx + F cosλx)(e−λy +Geλy) for λ ≠ 0
T = (Ex + F)(y +G) for λ = 0

(4.13)
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Figure 4.3 A two-dimensional slab maintained at a constant
temperature on the sides and subjected to a sinusoidal varia-
tion of temperature on one face.

Example 4.1

A long slab is cooled to 0◦C on both sides and a blowtorch is turned
on the top edge, giving an approximately sinusoidal temperature dis-
tribution along the top, as shown in Fig. 4.3. Find the temperature
distribution within the slab.

Solution. The general solution is given by eqn. (4.13). We must
therefore identify the appropriate b.c.’s and then fit the general solu-
tion to it. Those b.c.’s are:

on the top surface : T(x,0) = A sinπ
x
L

on the sides : T(0 or L,y) = 0

as y �→∞ : T(x,y →∞) = 0

Substitute eqn. (4.13) in the third b.c.:

(E sinλx + F cosλx)(0+G · ∞) = 0

The only way that this can be true for all x is if G = 0. Substitute
eqn. (4.13), with G = 0, into the second b.c.:

(O + F)e−λy = 0
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so F also equals 0. Substitute eqn. (4.13) with G = F = 0, into the first
b.c.:

E(sinλx) = A sinπ
x
L

It follows that A = E and λ = π/L. Then eqn. (4.13) becomes the
particular solution that satisfies the b.c.’s:

T = A
(

sinπ
x
L

)
e−πy/L

Thus, the sinusoidal variation of temperature at the top of the slab is
attenuated exponentially at lower positions in the slab. At a position
of y = 2L below the top, T will be 0.0019A sinπx/L. The tempera-
ture distribution in the x-direction will still be sinusoidal, but it will
have less than 1/500 of the amplitude at y = 0.

Consider some important features of this and other solutions:

• The b.c. at y = 0 is a special one that works very well with this
particular general solution. If we had tried to fit the equation to
a general temperature distribution, T(x,y = 0) = fn(x), it would
not have been obvious how to proceed. Actually, this is the kind
of problem that Fourier solved with the help of his Fourier series
method. We discuss this matter in more detail in Chapter 5.

• Not all forms of general solutions lend themselves to a particular
set of boundary and/or initial conditions. In this example, we made
the process look simple, but more often than not, it is in fitting a
general solution to a set of boundary conditions that we get stuck.

• Normally, on formulating a problem, we must approximate real be-
havior in stating the b.c.’s. It is advisable to consider what kind of
assumption will put the b.c.’s in a form compatible with the gen-
eral solution. The temperature distribution imposed on the slab
by the blowtorch in Example 4.1 might just as well have been ap-
proximated as a parabola. But as small as the difference between a
parabola and a sine function might be, the latter b.c. was far easier
to accommodate.

• The twin issues of existence and uniqueness of solutions require
a comment here: It has been established that solutions to all well-
posed heat diffusion problems are unique. Furthermore, we know
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from our experience that if we describe a physical process correctly,
a unique outcome exists. Therefore, we are normally safe to leave
these issues to a mathematician—at least in the sort of problems
we discuss here.

• Given that a unique solution exists, we accept any solution as cor-
rect since we have carved it to fit the boundary conditions. In this
sense, the solution of differential equations is often more of an in-
centive than a formal operation. The person who does it best is
often the person who has done it before and so has a large assort-
ment of tricks up his or her sleeve.

4.3 Dimensional analysis

Introduction

Most universities place the first course in heat transfer after an introduc-
tion to fluid mechanics: and most fluid mechanics courses include some
dimensional analysis. This is normally treated using the familiarmethod
of indices, which is seemingly straightforward to teach but is cumber-
some and sometimes misleading to use. It is rather well presented in
[4.1].

The method we develop here is far simpler to use than the method
of indices, and it does much to protect us from the common errors we
might fall into. We refer to it as the method of functional replacement.

The importance of dimensional analysis to heat transfer can be made
clearer by recalling Example 2.6, which (like most problems in Part I) in-
volved several variables. Theses variables included the dependent vari-
able of temperature, (T∞ − Ti);3 the major independent variable, which
was the radius, r ; and five system parameters, ri, ro, h, k, and (T∞ − Ti).
By reorganizing the solution into dimensionless groups [eqn. (2.24)], we
reduced the total number of variables to only four:

T − Ti
T∞ − Ti︸ ︷︷ ︸

dependent variable

= fn


 r

/
ri,︸ ︷︷ ︸

indep. var.

ro
/
ri, Bi︸ ︷︷ ︸

two system parameters


 (2.24a)

3Notice that we do not call Ti a variable. It is simply the reference temperature
against which the problem is worked. If it happened to be 0◦C, we would not notice its
subtraction from the other temperatures.
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This solution offered a number of advantages over the dimensional
solution. For one thing, it permitted us to plot all conceivable solutions
for a particular shape of cylinder, (ro/ri), in a single figure, Fig. 2.13.
For another, it allowed us to study the simultaneous roles of h, k and ro
in defining the character of the solution. By combining them as a Biot
number, we were able to say—even before we had solved the problem—
whether or not external convection really had to be considered.

The nondimensionalization made it possible for us to consider, simul-
taneously, the behavior of all similar systems of heat conduction through
cylinders. Thus a large, highly conducting cylinder might be similar in
its behavior to a small cylinder with a lower thermal conductivity.

Finally, we shall discover that, by nondimensionalizing a problem be-
fore we solve it, we can often greatly simplify the process of solving it.

Our next aim is to map out a method for nondimensionalization prob-
lems before we have solved then, or, indeed, before we have even written
the equations that must be solved. The key to the method is a result
called the Buckingham pi-theorem.

The Buckingham pi-theorem

The attention of scientific workers was apparently drawn very strongly
toward the question of similarity at about the beginning of World War I.
Buckingham first organized previous thinking and developed his famous
theorem in 1914 in the Physical Review [4.2], and he expanded upon the
idea in the Transactions of the ASME one year later [4.3]. Lord Rayleigh
almost simultaneously discussed the problem with great clarity in 1915
[4.4]. To understand Buckingham’s theorem, we must first overcome one
conceptual hurdle, which, if it is clear to the student, will make everything
that follows extremely simple. Let us explain that hurdle first.

Suppose that y depends on r ,x, z and so on:

y = y(r ,x, z, . . . )

We can take any one variable—say, x—and arbitrarily multiply it (or it
raised to a power) by any other variables in the equation, without altering
the truth of the functional equation, like this:

y
x
= y
x

(
x2r ,x,xz

)
To see that this is true, consider an arbitrary equation:

y = y(r ,x, z) = r(sinx)e−z
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This need only be rearranged to put it in terms of the desired modified
variables and x itself (y/x,x2r ,x, and xz):

y
x
= x2r

x3
(sinx) exp

[
−xz
x

]

We can do any such multiplying or dividing of powers of any variable
we wish without invalidating any functional equation that we choose to
write. This simple fact is at the heart of the important example that
follows:

Example 4.2

Consider the heat exchanger problem described in Fig. 3.15. The “un-
known,” or dependent variable, in the problem is either of the exit
temperatures. Without any knowledge of heat exchanger analysis, we
can write the functional equation on the basis of our physical under-
standing of the problem:

Tcout − Tcin︸ ︷︷ ︸
◦C

= fn


Cmax︸ ︷︷ ︸

W/◦C

, Cmin︸ ︷︷ ︸
W/◦C

,
(
Thin − Tcin

)︸ ︷︷ ︸
◦C

, U︸ ︷︷ ︸
W/m2·◦C

, A︸︷︷︸
m2


 (4.14)

where the dimensions of each term are noted under the quotation.
We want to know how many dimensionless groups the variables in

eqn. (4.14) should reduce to. To determine this number, we use the
idea explained above—that is, that we can arbitrarily pick one vari-
able from the equation and divide or multiply it into other variables.
Then—one at a time—we select a variable that has one of the dimen-
sions. We divide or multiply it by the other variables in the equation
that have that dimension in such a way as to eliminate the dimension
from them.

We do this first with the variable (Thin − Tcin), which has the di-
mension of ◦C.

Tcout − Tcin

Thin − Tcin︸ ︷︷ ︸
dimensionless

= fn


Cmax(Thin − Tcin)︸ ︷︷ ︸

W

, Cmin(Thin − Tcin)︸ ︷︷ ︸
W

,

(Thin − Tcin)︸ ︷︷ ︸
◦C

, U(Thin − Tcin)︸ ︷︷ ︸
W/m2

, A︸︷︷︸
m2
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The interesting thing about the equation in this form is that the only
remaining term in it with the units of ◦C is (Thin − Tcin). No such
term can exist in the equation because it is impossible to achieve
dimensional homogeneity without another term in ◦C to balance it.
Therefore, we must remove it.

Tcout − Tcin

Thin − Tcin︸ ︷︷ ︸
dimensionless

= fn


Cmax(Thin − Tcin)︸ ︷︷ ︸

W

, Cmin(Thin − Tcin)︸ ︷︷ ︸
W

, U(Thin − Tcin)︸ ︷︷ ︸
W/m2

, A︸︷︷︸
m2




Now the equation has only two dimensions in it—W and m2. Next, we
multiply U(Thin−Tcin) by A to get rid of m2 in the second-to-last term.
Accordingly, the term A (m2) can no longer stay in the equation, and
we have

Tcout − Tcin

Thin − Tcin︸ ︷︷ ︸
dimensionless

= fn


Cmax(Thin − Tcin)︸ ︷︷ ︸

W

, Cmin(Thin − Tcin)︸ ︷︷ ︸
W

, UA(Thin − Tcin)︸ ︷︷ ︸
W

,




Next, we divide the first and third terms on the right by the second.
This leaves only Cmin(Thin−Tcin), with the dimensions of W. That term
must then be removed, and we are left with the completely dimension-
less result:

Tcout − Tcin

Thin − Tcin

= fn
(
Cmax

Cmin
,
UA
Cmin

)
(4.15)

Equation (4.15) has exactly the same functional form as eqn. (3.21),
which we obtained by direct analysis.

Notice that we removed one variable from eqn. (4.14) for each di-
mension in which the variables are expressed. If there are n variables—
including the dependent variable—expressed in m dimensions, we then
expect to be able to express the equation in (n − m) dimensionless
groups, or pi-groups, as Buckingham called them.

This fact is expressed by the Buckingham pi-theorem, which we state
formally in the following way:
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A physical relationship among n variables, which can be ex-
pressed in a minimum of m dimensions, can be rearranged into
a relationship among (n−m) independent dimensionless groups
of the original variables.

Two important qualifications have been italicized. They will be explained
in detail in subsequent examples.

Buckingham called the dimensionless groups pi-groups and identified
them as Π1,Π2, ...,Πn−m. Normally we call Π1 the dependent variable
and retain Π2→(n−m) as independent variables. Thus, the dimensional
functional equation reduces to a dimensionless functional equation of
the form

Π1 = fn (Π2,Π3, . . . ,Πn−m) (4.16)

Applications of the pi-theorem

Example 4.3

Is eqn. (2.24) consistent with the pi-theorem?

Solution. To find out, we first write the dimensional functional
equation for Example 2.6:

T − Ti︸ ︷︷ ︸
◦C

= fn
[
r︸︷︷︸
m

, ri︸︷︷︸
m

, ro︸︷︷︸
m

, h︸ ︷︷ ︸
W/m2·◦C

, k︸ ︷︷ ︸
W/m·◦C

, (T∞ − Ti)︸ ︷︷ ︸
◦C

]

There are seven variables (n = 7) in three dimensions, ◦C, m, and W
(m = 3). Therefore, we look for 7− 3 = 4 pi-groups. There are four
pi-groups in eqn. (2.24):

Π1 = T − Ti
T∞ − Ti

, Π2 = r
ri
, Π3 = ro

ri
, Π4 = hro

k
≡ Bi.

Consider two features of this result. First, the minimum number of
dimensions was three. If we had written watts as J/s, we would have
had four dimensions instead. But Joules never appear in that particular
problem independently of seconds. They always appear as a ratio and
should not be separated. (If we had worked in English units, this would
have seemed more confusing, since there is no name for Btu/sec unless
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we first convert it to horsepower.) The failure to identify dimensions
that are consistently grouped together is one of the major errors that the
beginner makes in using the pi-theorem.

The second feature is the independence of the groups. This means
that we may pick any four dimensionless arrangements of variables, so
long as no group or groups can be made into any other group by math-
ematical manipulation. For example, suppose that someone suggested
that there was a fifth pi-group in Example 4.3:

Π5 =
√
hr
k

It is easy to see that Π5 can be written as

Π5 =
√
hro
k

√
r
ri

√
ri
ro
=

√
Bi
Π2

Π3

Therefore Π5 is not independent of the existing groups, nor will we ever
find a fifth grouping that is.

Another matter that is frequently made much of is that of identifying
the pi-groups once the variables are identified for a given problem. (The
method of indices [4.1] is a cumbersome arithmetic strategy for doing
this but it is perfectly correct.) We shall find the groups by using either
of two methods:

1. The groups can always be obtained formally by repeating the simple
elimination-of-dimensions procedure that was used to derive the
pi-theorem in Example 4.2.

2. One may simply arrange the variables into the required number of
independent dimensionless groups by inspection.

In any method, one must make judgments in the process of combining
variables and these decisions can lead to different arrangements of the
pi-groups. Therefore, if the problem can be solved by inspection, there
is no advantage to be gained by the use of a more formal procedure.

The methods of dimensional analysis can be used to help find the
solution of many physical problems. We offer the following example,
not entirely with tongue in cheek:

Example 4.4

Einstein might well have noted that the energy equivalent, e, of a rest
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mass, mo, depended on the velocity of light, co, before he developed
the special relativity theory. He wold then have had the following
dimensional functional equation:(

e N·m or e
kg· m2

s2

)
= fn (co m/s, mo kg)

The minimum number of dimensions is only two: kg and m/s, so we
look for 3 − 2 = 1 pi-group. To find it formally, we eliminated the
dimension of mass from e by dividing it by mo (kg). Thus,

e
mo

m2

s2
= fn

[
co m/s, mo kg︸ ︷︷ ︸

this must be removed
because it is the only
term with mass in it

]

Then we eliminate the dimension of velocity (m/s) by dividing e/mo
by c2

o :

e
moc2

o
= fn (co m/s)

This time co must be removed from the function on the right, since it
is the only term with the dimensions m/s. This gives the result (which
could have been written by inspection once it was known that there
could only be one pi-group):

Π1 = e
moc2

o
= fn (no other groups) = constant

or

e = constant ·
(
moc2

o

)
Of course, it required Einstein’s relativity theory to tell us that the
constant is unity.

Example 4.5

What is the velocity of efflux of liquid from the tank shown in Fig. 4.4?

Solution. In this case we can guess that the velocity, V , might de-
pend on gravity, g, and the head H. We might be tempted to include
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Figure 4.4 Efflux of liquid
from a tank.

the density as well until we realize that g is already a force per unit
mass. To understand this, we can use English units and divideg by the
conversion factor,4 gc . Thus (g ft/s2)/(gc lbm·ft/lbf s2) = g lbf/lbm.
Then

V︸︷︷︸
m/s

= fn
[
H︸︷︷︸
m

, g︸︷︷︸
m/s2

]

so there are three variables in two dimensions, and we look for 3−2 =
1 pi-groups. It would have to be

Π1 = V√
gH

= fn (no other pi-groups) = constant

or

V = constant ·
√
gH

The analytical study of fluid mechanics tells us that this form is
correct and that the constant is

√
2. The group V2/gh, by the way, is

called a Froude number, Fr (pronounced “Frood”). It compares inertial
forces to gravitational forces. Fr is about 1000 for a pitched baseball,
and it is between 1 and 10 for the water flowing over the spillway of
a dam.

4One can always divide any variable by a conversion factor without changing it.
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Example 4.6

Obtain the dimensionless functional equation for the temperature
distribution during steady conduction in a slab with a heat source, q̇.

Solution. In such a case, there might be one or two specified tem-
peratures in the problem: T1 or T2. Thus the dimensional functional
equation is

T − T1︸ ︷︷ ︸
◦C

= fn


(T2 − T1)︸ ︷︷ ︸

◦C

, x, L︸ ︷︷ ︸
m

, q̇︸︷︷︸
W/m3

, k︸ ︷︷ ︸
W/m·◦C

, h︸ ︷︷ ︸
W/m2·◦C




where we presume that a convective b.c. is involved and we identify a
characteristic length, L, in the x-direction. There are seven variables
in three dimensions, or 7 − 3 = 4 pi-groups. Three of these groups
are ones we have dealt with in the past in one form or another:

Π1 = T − T1

T2 − T1

dimensionless temperature, which we
shall give the name Θ

Π2 = x
L

dimensionless length, which we call ξ

Π3 = hL
k

which we recognize as the Biot number, Bi

The fourth group is new to us:

Π4 = q̇L2

k(T2 − T1)
which compares the heat generation rate
to the rate of heat loss; we call it Γ

Thus, the solution is

Θ = fn (ξ,Bi, Γ) (4.17)

In Example 2.1, we undertook such a problem, but it differed in two
respects. There was no convective boundary condition and hence, no h,
and only one temperature was specified in the problem. In this case, the
dimensional functional equation was

(T − T1) = fn
(
x,L, q̇, k

)
so there were only five variables in the same three dimensions. The re-
sulting dimensionless functional equation therefore involved only two
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pi-groups. One was ξ = x/L and the other is a new one equal to Θ/Γ . We
call it Φ:

Φ ≡ T − T1

q̇L2/k
= fn

(
x
L

)
(4.18)

And this is exactly the form of the analytical result, eqn. (2.15).

Finally, we must deal with dimensions that convert into one another.
For example, kg and N are defined in terms of one another through New-
ton’s Second Law of Motion. Therefore, they cannot be identified as sep-
arate dimensions. The same would appear to be true of J and N·m, since
both are dimensions of energy. However, we must discern whether or
not a mechanism exists for interchanging them. If mechanical energy
remains distinct from thermal energy in a given problem, then J should
not be interpreted as N·m.

This issue will prove important when we do the dimensional anal-
ysis of several heat transfer problems. See, for example, the analyses
of laminar convection problem at the beginning of Section 6.4, of natu-
ral convection in Section 8.3, of film condensation in Section 8.5, and of
pool boiling burnout in Section 9.3. In all of these cases, heat transfer
normally occurs without any conversion of heat to work or work to heat
and it would be misleading to break J into N·m.

Additional examples of dimensional analysis appear throughout this
book. Dimensional analysis is, indeed, our court of first resort in solving
most of the new problems that we undertake.

4.4 An illustration of the use of dimensional analysis
in a complex steady conduction problem

Heat conduction problems with convective boundary conditions can rap-
idly grow difficult, even if they start out simple, and so we look for ways
to avoid making mistakes. For one thing, it is wise to take great care
that dimensions are consistent at each stage of the solution. The best
way to do this, and to eliminate a great deal of algebra at the same time,
is to nondimensionalize the heat conduction equation before we apply
the b.c.’s. This nondimensionalization should be consistent with the pi-
theorem. We illustrate this idea with a fairly complex example.
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Figure 4.5 Heat conduction through a heat-generating slab
with asymmetric boundary conditions.

Example 4.7

A slab shown in Fig. 4.5 has different temperatures and different heat
transfer coefficients on either side and the heat is generated within
it. Calculate the temperature distribution in the slab.

Solution. The differential equation is

d2T
dx2

= − q̇
k

and the general solution is

T = − q̇x
2

2k
+ C1x + C2 (4.19)



§4.4 An illustration of dimensional analysis in a complex steady conduction problem 153

with b.c.’s

h1(T1 − T)x=0 = −k dT
dx

∣∣∣∣
x=0

, h2(T − T2)x=L = −k dT
dx

∣∣∣∣
x=L

.

(4.20)

There are eight variables involved in the problem: (T −T2), (T1−T2),
x, L, k, h1, h2, and q̇; and there are three dimensions: ◦C , W, and m.
This results in 8− 3 = 5 pi-groups. For these we choose

Π1 ≡ Θ = T − T2

T1 − T2
, Π2 ≡ ξ = x

L
, Π3 ≡ Bi1 = h1L

k
,

Π4 ≡ Bi2 = h2L
k

, and Π5 ≡ Γ = q̇L2

2k(T1 − T2)
,

where Γ can be interpreted as a comparison of the heat generated in
the slab to that which could flow through it.

Under this nondimensionalization, eqn. (4.19) becomes5

Θ = −Γ ξ2 + C3ξ + C4 (4.21)

and b.c.’s become

Bi1(1−Θξ=0) = −Θ′ξ=0, Bi2Θξ=1 = −Θ′ξ=1 (4.22)

where the primes denote differentiation with respect to ξ. Substitut-
ing eqn. (4.21) in eqn. (4.22), we obtain

Bi1(1− C4) = −C3, Bi2(−Γ + C3 + C4) = 2Γ − C3. (4.23)

Substituting the first of eqns. (4.23) in the second we get

C4 = 1+ −Bi1 + 2(Bi1/Bi2)Γ + Bi1Γ
Bi1 + Bi2

1

/
Bi2 + Bi2

1

C3 = Bi1(C4 − 1)

Thus, eqn. (4.21) becomes

Θ = 1+ Γ
[

2(Bi1
/
Bi2)+ Bi1

1+ Bi1
/
Bi2 + Bi1

ξ − ξ2 + 2(Bi1
/
Bi2)+ Bi1

Bi1 + Bi2
1

/
Bi2 + Bi2

1

]

− Bi1
1+ Bi1

/
Bi2 + Bi1

ξ − Bi1
Bi1 + Bi2

1

/
Bi2 + Bi2

1

(4.24)

5The rearrangement of the dimensional equations into dimensionless form is
straightforward algebra. If the results shown here are not immediately obvious to
you, sketch the calculation on a piece of paper.
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This is a complicated result and one that would have required enormous
patience and accuracy to obtain without first simplifying the problem
statement as we did. If the heat transfer coefficients were the same on
either side of the wall, then Bi1 = Bi2 ≡ Bi, and eqn. (4.24) would reduce
to

Θ = 1+ Γ
(
ξ − ξ2 + 1/Bi

)
− ξ + 1/Bi

1+ 2/Bi
(4.25)

which is a very great simplification.
Equation (4.25) is plotted on the left-hand side of Fig. 4.5 for Bi equal

to 0, 1, and ∞ and for Γ equal to 0, 0.1, and 1. The following features
should be noted:

• When Γ  0.1, the heat generation can be ignored.

• When Γ � 1,Θ → Γ/Bi + Γ(ξ − ξ2). This is a simple parabolic tem-
perature distribution displaced upward an amount that depends on
the relative external resistance, as reflected in the Biot number.

• If both Γ and 1/Bi become large, Θ → Γ/Bi. This means that when
internal resistance is low and the heat generation is great, the slab
temperature is constant and quite high.

If T2 were equal to T1 in this problem, Γ would go to infinity. In such
a situation, we should redo the dimensional analysis of the problem. The
dimensional functional equation now shows (T − T1) to be a function of
x, L, k, h, and q̇. There are six variables in three dimensions, so there
are three pi-groups

T − T1

q̇L/h
= fn (ξ,Bi)

where the dependent variable is like Φ [recall eqn. (4.18)] multiplied by
Bi. We can put eqn. (4.25) in this form by multiplying both sides of it by
h(T1 − T2)/q̇δ. The result is

h(T − T1)
q̇L

= 1
2

Bi
(
ξ − ξ2

)
+ 1

2
(4.26)

The result is plotted on the right-hand side of Fig. 4.5. The following
features of the graph are of interest:

• Heat generation is the only “force” giving rise to temperature nonuni-
formity. Since it is symmetric, the graph is also symmetric.
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• When Bi  1, the slab temperature approaches a uniform value
equal to T1 + q̇L/2h. (In this case, we would have solved the prob-
lem with far greater ease by using a simple lumped-capacity heat
balance, since it is no longer a heat conduction problem.)

• When Bi > 100, the temperature distribution is a very large parabola
with ½ added to it. In this case, the problem could have been solved
using boundary conditions of the first kind because the surface
temperature stays very close to T∞ (recall Fig. 1.11).

4.5 Fin design

The purpose of fins

The convective removal of heat from a surface can be substantially im-
proved if we put extensions on that surface to increase its area. These
extensions can take a variety of forms. Figure 4.6, for example, shows
many different ways in which the surface of commercial heat exchanger
tubing can be extended with protrusions of a kind we call fins.

Figure 4.7 shows another very interesting application of fins in a heat
exchanger design. This picture is taken from an issue of Science maga-
zine [4.5], which presents an intriguing argument by Farlow, Thompson,
and Rosner. They offered evidence suggesting that the strange rows of
fins on the back of the Stegosaurus were used to shed excess body heat
after strenuous activity, which is consistent with recent suspicions that
Stegosaurus was warm-blooded.

These examples involve some rather complicated fins. But the analy-
sis of a straight fin protruding from a wall displays the essential features
of all fin behavior. This analysis has direct application to a host of prob-
lems.

Analysis of a one-dimensional fin

The equations. Figure 4.8 shows a one-dimensional fin protruding from
a wall. The wall—and the roots of the fin—are at a temperature T0, which
is either greater or less than the ambient temperature, T∞. The length
of the fin is cooled or heated through a heat transfer coefficient, h, by
the ambient fluid. The heat transfer coefficient will be assumed uniform,
although (as we see in Part III) that can introduce serious error in boil-



Figure 4.6 Some of the many varieties of finned tubes.
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Figure 4.7 The Stegosaurus with what
might have been cooling fins (etching by
Daniel Rosner).

ing, condensing, or other natural convection situations, and will not be
strictly accurate even in forced convection.

The tip may or may not exchange heat with the surroundings through
a heat transfer coefficient, hL, which would generally differ from h. The
length of the fin is L, its uniform cross-sectional area is A, and its cir-
cumferential perimeter is P .

The characteristic dimension of the fin in the transverse direction
(normal to the x-axis) is taken to be A/P . Thus, for a circular cylindrical
fin, A/P = π(radius)2/(2π radius) = (radius/2). We define a Biot num-
ber for conduction in the transverse direction, based on this dimension,
and require that it be small:

Bifin = h(A/P)
k

 1 (4.27)

This condition means that the transverse variation of T at any axial po-
sition, x, is much less than (Tsurface − T∞). Thus, T � T(x only) and the



158 Analysis of heat conduction and some steady one-dimensional problems §4.5

Figure 4.8 The analysis of a one-dimensional fin.

heat flow can be treated as one-dimensional.
An energy balance on the thin slice of the fin shown in Fig. 4.8 gives

−kA dT
dx

∣∣∣∣
x+δx

+ kA
dT
dx

∣∣∣∣
x
+ h(Pδx)(T − T∞)x = 0 (4.28)

but

dT/dx|x+δx − dT/dx|x
δx

�→ d2T
dx2

= d2(T − T∞)
dx2

(4.29)

so

d2(T − T∞)
dx2

= hP
kA

(T − T∞) (4.30)
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The b.c.’s for this equation are

(T − T∞)x=0 = T0 − T∞

−kA d(T − T∞)
dx

∣∣∣∣
x=L

= hLA(T − T∞)x=L
(4.31a)

Alternatively, if the tip is insulated, or if we can guess that hL is small
enough to be unimportant, the b.c.’s are

(T − T∞)x=0 = T0 − T∞ and
d(T − T∞)

dx

∣∣∣∣
x=L

= 0 (4.31b)

Before we solve this problem, it will pay to do a dimensional analysis of
it. The dimensional functional equation is

T − T∞ = fn
[
(T0 − T∞) , x, L, kA,hP,hLA

]
(4.32)

Notice that we have written kA, hP , and hLA as single variables. The
reason for doing so is subtle but important. Setting h(A/P)/k  1,
erases any geometric detail of the cross section from the problem. The
only place where P and A enter the problem is as product of k,h,orhL.
If they showed up elsewhere, they would have to do so in a physically
incorrect way. Thus, we have just seven variables in W, ◦C, and m. This
gives four pi-groups if the tip is uninsulated:

T − T∞
T0 − T∞

= fn



x
L
,

√
hP
kA

L2,
hLAL
kA︸ ︷︷ ︸

=hLL
/
k




or if we rename the groups,

Θ = fn (ξ,mL,Biaxial) (4.33a)

where we call
√
hPL2/kA ≡mL because that terminology is common in

the literature on fins.
If the tip of the fin is insulated, hL will not appear in eqn. (4.32). There

is one less variable but the same number of dimensions; hence, there will
be only three pi-groups. The one that is removed is Biaxial, which involves
hL. Thus, for the insulated fin,

Θ = fn(ξ,mL) (4.33b)
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We put eqn. (4.30) in these terms by multiplying it by L2/(T0 − T∞). The
result is

d2Θ
dξ2

= (mL)2Θ (4.34)

This equation is satisfied by Θ = Ce±(mL)ξ . The sum of these two solu-
tions forms the general solution of eqn. (4.34):

Θ = C1emLξ + C2e−mLξ (4.35)

Temperature distribution in a one-dimensional fin with the tip insu-
lated The b.c.’s [eqn. (4.31b)] can be written as

Θξ=0 = 1 and
dΘ
dξ

∣∣∣∣∣
ξ=1

= 0 (4.36)

Substituting eqn. (4.35) into both eqns. (4.36), we get

C1 + C2 = 1 and C1emL − C2e−mL = 0 (4.37)

Mathematical Digression 4.1

To put the solution of eqn. (4.37) for C1 and C2 in the simplest form,
we need to recall a few properties of hyperbolic functions. The four basic
functions that we need are defined as

sinhx ≡ ex − e−x

2

coshx ≡ ex + e−x

2

tanhx ≡ sinhx
coshx

= ex − e−x

ex + e−x

cothx ≡ ex + e−x

ex − e−x

(4.38)

where x is the independent variable. Additional functions are defined
by analogy to the trigonometric counterparts. The differential relations
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can be written out formally, and they also resemble their trigonometric
counterparts.

d
dx

sinhx = 1
2

[
ex − (−e−x)

]
= coshx

d
dx

coshx = 1
2

[
ex + (−e−x)

]
= sinhx

(4.39)

These are analogous to the familiar results, d sinx/dx = cosx and
d cosx/dx = − sinx, but without the latter minus sign.

The solution of eqns. (4.37) is then

C1
e−mL

2 coshmL
and C2 = 1− e−ml

2 coshmL
(4.40)

Therefore, eqn. (4.35) becomes

Θ = e−mL(1−ξ) + (2 coshmL)e−mLξ − e−mL(1+ξ)

2 coshmL

which simplifies to

Θ = coshmL(1− ξ)
coshmL

(4.41)

for a one-dimensional fin with its tip insulated.
One of the most important design variables for a fin is the rate at

which it removes (or delivers) heat the wall. To calculate this, we write
Fourier’s law for the heat flow into the base of the fin:6

Q = −kA d(T − T∞)
dx

∣∣∣∣
x=0

(4.42)

We multiply eqn. (4.42) by L/kA(T − T∞) and obtain, after substituting
eqn. (4.41) on the right-hand side,

QL
kA(T0 − T∞)

=mL
sinhmL
coshmL

=mL tanhmL (4.43)

6We could also integrate h(T − T∞) over the outside area of the fin to get Q. The
answer would be the same, but the calculation would be a little more complicated.
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Figure 4.9 The temperature distribution, tip temperature, and
heat flux in a straight one-dimensional fin with the tip insulated.

which can be written

Q√
(kA)(hP)(T0 − T∞)

= tanhmL (4.44)

Figure 4.9 includes two graphs showing the behavior of one-dimensional
fin with an insulated tip. The top graph shows how the heat removal in-
creases with mL to a virtual maximum at mL � 3. This means that no
such fin should have a length in excess of 2/m or 3/m if it is being used
to cool (or heat) a wall. Additional length would simply increase the cost
without doing any good.

Also shown in the top graph is the temperature of the tip of such a
fin. Setting ξ = 1 in eqn. (4.41), we discover that

Θtip = 1
coshmL

(4.45)
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This dimensionless temperature drops to about 0.014 at the tip whenmL
reaches 5. This means that the end is 0.014(T0 − T∞)◦C above T∞ at the
end. Thus, if the fin is actually functioning as a holder for a thermometer
or a thermocouple that is intended to read T∞, the reading will be in error
if mL is not significantly greater than five.

The lower graph in Fig. 4.9 hows how the temperature is distributed
in insulated-tip fins for various values of mL.

Experiment 4.1

Clamp a 20 cm or so length of copper rod by one end in a horizontal
position. Put a candle flame very near the other end and let the arrange-
ment come to a steady state. Run your finger along the rod. How does
what you feel correspond to Fig. 4.9? (The diameter for the rod should
not exceed about 3 mm. A larger rod of metal with a lower conductivity
will also work.)

Exact temperature distribution in a fin with an uninsulated tip. The
approximation of an insulated tip may be avoided using the b.c’s given
in eqn. (4.31a), which take the following dimensionless form:

Θξ=0 = 1 and − dΘ
dξ

∣∣∣∣∣
ξ=1

= BiaxΘξ=1 (4.46)

Substitution of the general solution, eqn. (4.35), in these b.c.’s yields

C1 + C2 = 1

−mL(C1emL − C2e−mL) = Biax(C1emL + C2e−mL)
(4.47)

It requires some manipulation to solve eqn. (4.47) for C1 and C2 and to
substitute the results in eqn. (4.35). We leave this as an exercise (Problem
4.11). The result is

Θ = coshmL(1− ξ)+ (Biax/mL) sinhmL(1− ξ)
coshmL+ (Biax/mL) sinhmL

(4.48)

which is the form of eqn. (4.33a), as we anticipated. The corresponding
heat flux equation is

Q√
(kA)(hP)(T0 − T∞)

= (Biax/mL)+ tanhmL
1+ (Biax/mL) tanhmL

(4.49)
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We have seen that mL is not too much greater than unity in a well-
designed fin with an insulated tip. Furthermore, when hL is small (as it
might be in natural convection), Biax is normally much less than unity.
Therefore, in such cases, we expect to be justified in neglecting terms
multiplied by Biax. Then eqn. (4.48) reduces to

Θ = coshmL(1− ξ)
coshmL

(4.41)

which we obtained by analyzing an insulated fin.
It is worth pointing out that we are in serious difficulty if hL is so

large that we cannot assume the tip to be insulated. The reason is that
hL is nearly impossible to predict in most practical cases.

Example 4.8

A 2 cm diameter aluminum rod with k = 205 W/m◦C, 8 cm in length,
protrudes from a 150◦C wall. Air at 26◦C flows by it, and h = 120
W/m◦C. Determine whether or not tip conduction is important in this
problem. To do this, make the very crude assumption that h � hL.
Then compare the tip temperatures as calculated with and without
considering heat transfer from the tip.

Solution.

mL =
√
hPL2

kA
=

√
120(0.08)2

205(0.01/2)
= 0.8656

Biax = hL
k
= 120(0.08)

205
= 0.0468

Therefore, eqn. (4.48) becomes

Θ (ξ = 1) = Θtip = cosh 0+ (0.0468/0.8656) sinh 0
cosh(0.8656)+ (0.0468/0.8656) sinh(0.8656)

= 1
1.3986+ 0.0529

= 0.6886

so the exact tip temperature is

Ttip = T∞ + 0.6886(T0 − T∞)
= 26+ 0.6886(150− 26) = 111.43◦C
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Equation (4.41) or Fig. 4.9, on the other hand, gives

Θtip = 1
1.3986

= 0.7150

so the approximate tip temperature is

Ttip = 26+ 0.715(150− 26) = 114.66◦C

Thus the insulated-tip approximation is adequate for the computation
in this case.

Very long fin. If a fin is so long that mL� 1, then eqn. (4.41) becomes

limit
mL→∞

Θ = limit
mL→∞

emL(1−ξ) + e−mL(1−ξ)

emL + e−mL = emL(1−ξ)

emL

or

limit
mL→large

Θ = e−mLξ (4.50)

Substituting this result in eqn. (4.42), we obtain [cf. eqn. (4.44)]

Q =
√
(kA)(hP)(T0 − T∞) (4.51)

A heating or cooling fin would have to be terribly overdesigned for these
results to apply—that is, mL would have been made much larger than
necessary. Very long fins are common, however, in a variety of situations
related to undesired heat losses. In practice, a fin may be regarded as
“infinitely long” in computing its temperature if mL � 5; in computing
Q, mL � 3 is sufficient for the infinite fin approximation.

Physical significance of mL. The group mL has thus far proved to be
extremely useful in the analysis and design of fins. We should therefore
say a brief word about its physical significance. Notice that

(mL)2 = L/kA
1/h(PL)

= internal resistance in x-direction
gross external resistance

Thus (mL)2 is a hybrid Biot number. When it is big, Θ|ξ=1 → 0 and we
can neglect tip convection. When it is small, the temperature drop along
the axis of the fin becomes small (see the lower graph in Fig. 4.9).
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The group (mL)2 also has a peculiar similarity to the NTU (Chapter
3) and the dimensionless time, t/T , that appears in the lumped-capacity
solution (Chapter 1). Thus,

h(PL)
kA/L

is like
UA
Cmin

is like
hA

ρcV/t

In each case a convective heat rate is compared with a heat rate that
characterizes the capacity of a system; and in each case the system tem-
perature asymptotically approaches its limit as the numerator becomes
large. This was true in eqn. (1.22), eqn. (3.21), eqn. (3.22), and eqn. (4.50).

The problem of specifying the root temperature

Thus far, we have assmed the root temperature of a fin to be given infor-
mation. There really are many circumstances in which it might be known;
however, if a fin protrudes from a wall of the same material, as sketched
in Fig. 4.10a, it is clear that for heat to flow, there must be a temperature
gradient in the neighborhood of the root.

Consider the situation in which the surface of a wall is kept at a tem-
perature Ts . Then a fin is placed on the wall as shown in the figure. If
T∞ < Ts , the wall temperature will be depressed in the neighborhood of
the root as heat flows into the fin. The fin’s performance should then be
predicted using the lowered root temperature, Troot.

This heat conduction problem has been analyzed for several fin ar-
rangements by Sparrow and co-workers. Fig. 4.10b is the result of Spar-
row and Hennecke’s [4.6] analysis for a single circular cylinder. They
give

1− Qactual

Qno temp. depression
= Ts − Troot

Ts − T∞
= fn

[
hr
k
, (mr) tanh(mL)

]
(4.52)

where r is the radius of the fin. From the figure we see that the actual
heat flux into the fin, Qactual, and the actual root temperature are both
reduced when the Biot number, hr/k, is large and the fin constant, m, is
small.

Example 4.9

Neglect the tip convection from the fin in Example 4.8 and suppose
that it is embedded in a wall of the same material. Calculate the error
inQ and the actual temperature of the root if the wall is kept at 150◦C.



Figure 4.10 The influence of heat flow into the root of circular
cylindrical fins [4.6].
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Solution. From Example 4.8 we have mL = 0.8656 and hr/k =
120(0.010)/205 = 0.00586. Then, with mr = mL(r/L), we have
(mr) tanh(mL) = 0.8656(0.010/0.080) tanh(0.8656) = 0.0756. The
lower portion of Fig. 4.10b then gives

1− Qactual

Qno temp. depression
= Ts − Troot

Ts − T∞
= 0.05

so the heat flow is reduced by 5% and the actual root temperature is

Troot = 150− (150− 26)0.05 = 143.8◦C

The correction is modest in this case.

Fin design

Two basic measures of fin performance are particularly useful in a fin
design. The first is called the efficiency, ηf.

ηf ≡ actual heat transferred by a fin
heat that would be transferred if the entire fin were at T = T0

(4.53)

To see how this works, we evaluate ηf for a one-dimensional fin with an
insulated tip:

ηf =
√
(hP)(kA)(T0 − T∞) tanhmL

h(PL)(T0 − T∞)
= tanhmL

mL
(4.54)

This says that, under the definition of efficiency, a very long fin will give
tanhmL/mL → 1/large number, so the fin will be inefficient. On the
other hand, the efficiency goes up to 100% as the length is reduced to
zero, because tanh(mL)small → mL. While a fin of zero length would
accomplish litte, a fin of small m might be designed in order to keep the
tip temperature near the root temperature; this, for example, is desirable
if the fin is the tip of a soldering iron.

It is therefore clear that, while ηf provides some useful information
as to how well a fin is contrived, it is not possible to design toward any
particular value of ηf.

A second measure of fin performance is called the effectiveness, ε:

ε ≡ heat flux from the wall with the fin
heat flux from the wall without the fin

(4.55)
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This can easily be computed from the efficiency:

ε = ηf
surface area of the fin

cross-sectional area of the fin
(4.56)

Normally, we want the effectiveness to be as high as possible, But this
can always be done by extending the length of the fin, and that—as we
have seen—rapidly becomes a losing proposition.

The measures ηf and ε probably attract the interest of designers not
because their absolute values guide the designs, but because they are
useful in characterizing fins with more complex shapes. In such cases
the solutions are often so complex that ηf and ε plots serve as labor-
saving graphical solutions. We deal with some of these curves in the
following section.

The design of a fin thus becomes an open-ended matter of optimizing,
subject to many factors. Some of the factors that have to be considered
include:

• The weight of material added by the fin. This might be a cost factor
or it might be an important consideration in its own right.

• The possible dependence of h on (T − T∞), flow velocity past the
fin, or other influences.

• The influence of the fin (or fins) on the heat transfer coefficient, h,
as the fluid moves around it (or them).

• The geometric configuration of the channel that the fin lies in.

• The cost and complexity of manufacturing fins.

• The pressure drop introduced by the fins.

Fins of variable cross section

Let us consider what is involved is the design of a fin for which A and
P are functions of x. Such a fin is shown in Fig. 4.11. We restrict our
attention to fins for which

h(A/P)
k

 1 and
d(a/P)
d(x)

 1

so the heat flow will be approximately one-dimensional in x.
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Figure 4.11 A general fin of variable cross section.

We begin the analysis, as always, with the First Law statement:

Qnet = Qcond −Qconv = dU
dt

or7

[
kA(x + δx)

dT
dx

∣∣∣∣
x=δx

− kA(x)
dT
dx

∣∣∣∣
x

]
︸ ︷︷ ︸

= d
dx

kA(x)
dT
dx

δx

−hP δx (T − T∞)

= ρcA(x)δx
dT
dt︸ ︷︷ ︸

=0, since steady

Therefore,

d
dx

[
A(x)

d(T − T∞)
dx

]
− hP

k
(T − T∞) = 0 (4.57)

IfA(x) = constant, this reduces toΘ′′−(mL)2Θ = 0, which is the straight
fin equation.

7Note that we approximate the external area of the fin as horizontal when we write
it as P δx. The actual area is negligibly larger than this in most cases. An exception
would be the tip of the fin in Fig. 4.11.
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Figure 4.12 A two-dimensional wedge-shaped fin.

To see how eqn. (4.57) works, consider the triangular fin shown in
Fig. 4.12. In this case eqn. (4.57) becomes

d
dx

[
2δ

(
x
L

)
b
d(T − T∞)

dx

]
− 2hb

k
(T − T∞) = 0

or

ξ
d2Θ
dξ2

+ dΘ
dξ

− hL2

kδ︸ ︷︷ ︸
a kind

of (mL)2

Θ = 0 (4.58)

This second-order linear differential equation is difficult to solve because
it has a variable coefficient. Its solution is expressible in Bessel functions:

Θ =
Io

(
2
√
hLx/kδ

)

Io
(

2
√
hL2/kδ

) (4.59)

where the modified Bessel function of the first kind, Io, can be looked up
in appropriate tables.

Rather than explore the mathematics of solving eqn. (4.57), we simply
show the result for several geometries in terms of the fin efficiency, ηf,
in Fig. 4.13. These curves were given by Schneider [4.7]. Kern and Kraus
[4.8] provide a very complete discussion of fins and show a great many
additional efficiency curves.



Figure 4.13 The efficiency of several fins with variable cross section.
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Example 4.10

A thin brass pipe, 3 cm in outside diameter, carries hot water at 85◦C.
It is proposed to place 0.8 mm thick straight circular fins on the pipe
to cool it. The fins are 8 cm in diameter and are spaced 2 cm apart. It is
determined that h will equal 20 W/m2·◦C on the pipe and 15 W/m2·◦C
on the fins, when they have been added. If T∞ = 22◦C, compute the
heat loss per meter of pipe before and after the fins are added.

Solution. Before the fins are added,

Q = π(0.03 m)(20 W/m2·◦C)(85− 22)◦C = 199 W/m

where we set Twall − Twater since the pipe is thin. Notice that, since
the wall is constantly heated by the water, we should not have a root-
temperature depression problem after the fins are added. Then we
can enter Fig. 4.13a with

r2

r1
= 2.67 and mL

√
L
P
=

√
hL3

kA
=

√
15(0.04− 0.15)3

125(0.025)(0.0008)
= 0.306

and we obtain ηf = 89%. Thus, the actual heat transfer given by

Qwithout fin︸ ︷︷ ︸
119 W/m

(
0.02− 0.0008

0.02

)
︸ ︷︷ ︸

fraction of unfinned area

+ 0.89 [2π(0.042 − 0.0152)]︸ ︷︷ ︸
area per fin (both sides), m2

(
50

fins
m

)(
15

W
m2◦C

)
[(85− 22)◦C]

so

Qnet = 478 W/m = 4.02 Qwithout fins

Problems

4.1 Make a table listing the general solutions of all steady, unidi-
mensional constant-properties heat conduction problemns in
Cartesian, cylindrical and spherical coordinates, with and with-
out uniform heat generation. This table should prove to be a
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very useful tool in future problem solving. It should include a
total of 18 solutions. State any restrictions on your solutions.
Do not include calculations.

4.2 The left side of a slab of thickness L is kept at 0◦C. The right
side is cooled by air at T∞◦C blowing on it. hRHS is known.
An exothermic reaction takes place in the slab such that heat
is generated at A(T − T∞) W/m3, where A is a constant. Find
a fully dimensionless expression for the temperature distribu-
tion in the wall.

4.3 A long, wide plate of known size, material, and thickness L is
connected across the terminals of a power supply and serves
as a resistance heater. The voltage, current and T∞ are known.
The plate is insulated on the bottom and transfers heat out the
top by convection. The temperature, Ttc, of the botton is mea-
sured with a thermocouple. Obtain expressions for (a) temper-
ature distribution in the plate; (b) h at the top; (c) temperature
at the top. (Note that your answers must depend on known
information only.) [Ttop = Ttc − EIL2/2k Vol.]

4.4 The heat tansfer coefficient, h, resulting from a forced flow
over a flat plate depends on the fluid velocity, viscosity, density,
specific heat, and thermal conductivity, as well as on the length
of the plate. Develop the dimensionless functional equation for
the heat transfer coefficient (cf. Section 6.5).

4.5 Water vapor condenses on a cold pipe and drips off the bottom
in regularly spaced nodes as sketched in Fig. 3.9. The wave-
length of these nodes, λ, depends on the liquid-vapor density
difference, ρf − ρg, the surface tension, σ , and the gravity, g.
Find how λ varies with its dependent variables.

4.6 A thick film flows down a vertical wall. The local film velocity
at any distance from the wall depends on that distance, gravity,
the liquid kinematic viscosity, and the film thickness. Obtain
the dimensionless functional equation for the local velocity (cf.
Section 8.5).

4.7 A steam preheater consists of a thick, electrically conducting,
cylindrical shell insulated on the outside, with wet stream flow-
ing down the middle. The inside heat transfer coefficient is
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highly variable, depending on the velocity, quality, and so on,
but the flow temperature is constant. Heat is released at q̇ J/m3s
within the cylinder wall. Evaluate the temperature within the
cylinder as a function of position. Plot Θ against ρ, where Θ is
an appropriate dimensionless temperature and ρ = r/ro. Use
ρi = 2/3 and note that Bi will be the parameter of a family
of solutions. On the basis of this plot, recommend criteria (in
terms of Bi) for (a) replacing the convective boundary condi-
tion on the inside with a constant temperature condition; (b)
neglecting temperature variations within the cylinder.

4.8 Steam condenses on the inside of a small pipe, keeping it at
a specified temperature, Ti. The pipe is heated by electrical
resistance at a rate q̇ W/m3. The outside temperature is T∞ and
there is a natural convection heat transfer coefficient, h around
the outside. (a) Derive an expression for the dimensionless
expression temperature distribution, Θ = (T − T∞)/(Ti − T∞),
as a function of the radius ratios, ρ = r/ro and ρi = ri/ro;
a heat generation number, Γ = q̇r2

o /k(Ti − T∞); and the Biot
number. (b) Plot this result for the case ρi = 2/3, Bi = 1, and
for several values of Γ . (c) Discuss any interesting aspects of
your result.

4.9 Solve Problem 2.5 if you have not already done so, putting it in
dimensionless form before you begin. Then let the Biot num-
bers approach infinity in the solution. You should get the same
solution we got in Example 2.5, using b.c.’s of the first kind. Do
you?

4.10 Complete the algebra that is missing between eqns. (4.30) and
eqn. (4.31b) and eqn. (4.41).

4.11 Complete the algebra that is missing between eqns. (4.30) and
eqn. (4.31a) and eqn. (4.48).

4.12 Obtain eqn. (4.50) from the general solution for a fin [eqn. (4.35)],
using the b.c.’s T(x = 0) = T0 and T(x = L) = T∞. Comment
on the significance of the computation.

4.13 What is the minimum length, l, of a thermometer well necessary
to ensure an error less than 0.5% of the difference between the
pipe wall temperature and the temperature of fluid flowing in
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a pipe? Assume that the fluid is steam at 260◦C and that the
coefficient between the steam and the tube wall is 300 W/m2·◦C.
The well consists of a tube with the end closed. It has a 2 cm
O.D. and a 1.88 cm I.D. The material is type 304 stainless steel.
[3.44 cm.]

4.14 Thin fins with a 0.002 m by 0.02 m rectangular cross section
and a thermal conductivity of 50 W/m2·◦C protrude from a wall
and have h � 600 W/m2·◦C and T0 = 170◦C. What is the heat
flow rate into each fin and what is the effectiveness? T∞ = 20◦C.

4.15 A thin rod is anchored at a wall at T = T0 on one end and is
insulated at the other end. Plot the dimensionless temperature
distribution in the rod as a function of dimensionless length:
(a) if the rod is exposed to an environment at T∞ through a
heat transfer coefficient; (b) if the rod is insulated but heat is
removed from the fin material at the unform rate−q̇ = hP(T0−
T∞)/A. Comment on the implications of the comparison.

4.16 A tube of outside diameter do and inside diameter di carries
fluid at T = T1 from one wall at temperature T1 to another wall
a distance L away, at Tr . Outside the tube ho is negligible, and
inside the tube hi is substantial. Treat the tube as a fin and plot
the dimensionless temperature distribution in it as a function
of dimensionless length.

4.17 (If you have had some applied mathematics beyond the usual
two years of calculus, this problem will not be difficult.) The
shape of the fin in Fig. 4.12 is changed so thatA(x) = 2δ(x/L)2b
instead of 2δ(x/L)b. Calculate the temperature distribution
and the heat flux at the base. Plot the temperature distribution
and fin thickness against x/L. Derive an expression for ηf.

4.18 Work Problem 2.21, if you have not already done so, nondi-
mensionalizing the problem before you attempt to solve it. It
should now be much simpler.

4.19 One end of a copper rod 30 cm long is held at 200◦C, and the
other end is held at 93◦C. The heat transfer coefficient in be-
tween is 17 W/m2·◦C. If T∞ = 38◦C and the diameter of the rod
is 1.25 cm, what is the net heat removed by the air around the
rod? [19.13 W.]
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4.20 How much error will the insulated-tip assumption give rise to
in the calculation of the heat flow into the fin in Example 4.8?

4.21 A straight cylindrical fin 0.6 cm in diameter and 6 cm long pro-
trudes from a magnesium block at 300◦C. Air at 35◦C is forced
past the fin so that h is 130 W/m2·◦C. Calculate the heat re-
moved by the fin, considering the temperature depression of
the root.

4.22 Work Problem 4.19 considering the temperature depression in
both roots. To do this, find mL for the two fins with insulated
tips that would give the same temperature gradient at each wall.
Base the correction on these values of mL.

4.23 A fin of triangular axial section (cf. Fig. 4.12) 0.1 m in length
and 0.02 m wide at its base is used to extend the surface area
of a mild steel wall. If the wall is at 40◦C and heated gas flows
past at 200◦C (h = 230 W/m2·◦C), compute the heat removed by
the fin per meter of breadth, b, of the fin. Neglect temperature
distortion at the root.

4.24 Consider the concrete slab in Example 2.1. Suppose that the
heat generation were to cease abruptly at time t = 0 and the
slab were to start cooling back toward Tw . Predict T = Tw as a
function of time, noting that the intitial parabolic temperature
profile can be nicely approximated as a sine function. (Without
the sine approximation, this problem would require the series
methods of Chapter 5.)

4.25 Steam condenses in a 2 cm I.D. thin-walled tube of 99% alu-
minum at 10 atm pressure. There are circular fins of constant
thickness, 3.5 cm in diameter, every 0.5 cm. The fins are 0.8
mm thick and the heat transfer coefficient h = 6 W/m2·◦C on
the outside. What is the mass rate of condensation if the pipe
is 1.5 m in length, the ambient temperature is 18◦C, and h for
condensation is very large? [ṁcond = 0.802 kg/hr.]

4.26 How long must a copper fin, 0.4 cm in diameter, be if the tem-
perature of its insulated tip is to exceed the surrounding air
temperature by 20% of (T0 − T∞)? Tair = 20◦C and h = 28
W/m2·◦C.
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4.27 A 2 cm ice cube sits on a shelf of aluminum rods, 3 mm in
diameter, in a refrigerator at 10◦C. How rapidly, in mm/min,
does the ice cube melt through the wires if h between the wires
and the air is 10 W/m2·◦C. (Be sure that you understand the
physical mechanism before you make the calculation.) Check
your result experimentally. hsf = 333,300 J/kg.

4.28 The highest heat flux that can be achieved in nucleate boiling
(called qmax—see the qualitative discussion in Section 9.1) de-
pends upon ρg, the saturated vapor density; hfg, the latent heat
vaporization; σ , the surface tension; a characteristic length, l;
and the gravity force per unit volume, g(ρf−ρg), where ρf is the
saturated liquid density. Develop the dimensionless functional
equation for qmax in terms of dimensionless length.

4.29 You want to rig a handle for a door in the wall of a furnace. The
door is at 160◦C. You consider bending a 16 in. length of ¼ in.
mild steel rod into a U-shape and welding the ends to the door.
Surrounding air at 24◦C will cool the handle (h = 12 W/m2·◦C).
What is the coolest temperature of the handle? How close to
the door can you grasp it without being burned? How might
you improve the handle?

4.30 A 14 cm long by 1 cm square brass rod is supplied with 25 W at
its base. The other end is insulated. It is cooled by air at 20◦C,
with h = 68 W/m2·◦C. Develop a dimensionless expression for
Θ as a function of ε and other known information. Calculate
the base temperature.

4.31 A cylindrical fin has a constant imposed heat flux of q1 at one
end and q2 at the other end, and it is cooled convectively along
its length. Develop the dimensionless temperature distribution
in the fin. Specialize this result for q2 = 0 and L → ∞, and
compare it with eqn. (4.50).

4.32 A thin metal cylinder of radius ro serves as an electrical resis-
tance heater. The temperature along an axial line in one side is
kept at T1. Another line, θ2 radians away, is kept at T2. Develop
dimensionless expressions for the temperature distributions in
the two sections.
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4.33 Heat transfer is augmented, in a particular heat exchanger, with
a field of 0.007 m diameter fins protruding 0.02 m into a flow.
The fins are arranged in a hexagonal array, with a minimum
spacing of 1.8 cm. The fins are bronze, and hf around the
fins is 168 W/m2·◦C. On the wall itself, hw is only 54 W/m2·◦C.
Calculate heff for the wall with its fins. (heff = Qwall divided by
Awall and [Twall − T∞].)

4.34 Evaluate d(tanhx)/dx.

4.35 An engineer seeks to study the effect of temperature on the
curing of concrete by controlling the temperature of curing in
the following way. A sample slab of thickness L is subjected
to a heat flux, qw, on one side, and it is cooled to temperature
T1 on the other. Derive a dimensionless expression for the
steady temperature in the slab. Plot the expression and offer a
criterion for neglecting the internal heat generation in the slab.

4.36 Develop the dimensionless temperature distribution in a spher-
ical shell with the inside wall kept at one temperature and the
outside wall at a second temperature. Reduce your solution
to the limiting cases in which routside � rinside and in which
routside is very close to rinside. Discuss these limits.

4.37 Does the temperature distribution during steady heat transfer
in an object with b.c.’s of only the first kind depend on k? Ex-
plain.

4.38 A long, 0.005 m diameter duralumin rod is wrapped with an
electrical resistor over 3 cm of its length. The resistor imparts
a surface flux of 40 kW/m2. Evaluate the temperature of the
rod in either side of the heated section if h = 150 W/m2·◦C
around the unheated rod, and Tambient = 27◦C.

4.39 The heat transfer coefficient between a cool surface and a satu-
rated vapor, when the vapor condenses in a film on the surface,
depends on the liquid density and specific heat, the tempera-
ture difference, the buoyant force per unit volume (g[ρf−ρg]),
the latent heat, the liquid conductivity and the kinematic vis-
cosity, and the position (x) on the cooler. Develop the dimen-
sionless functional equation for h.
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4.40 A duralumin pipe through a cold room has a 4 cm I.D. and a
5 cm O.D. It carries water that sometimes sits stationary. It
is proposed to put electric heating rings around the pipe to
protect it against freezing during cold periods of −7◦C. The
heat transfer coefficient outside the pipe is 9 W/m2·◦C. Neglect
the presence of the water in the conduction calculation, and
determine how far apart the heaters would have to be if they
brought the pipe temperature to 40◦C locally. How much heat
do they require?

4.41 The specific entropy of an ideal gas depends on its specific
heat at constant pressure, its temperature and pressure, the
ideal gas constant and reference values of the temperature and
pressure. Obtain the dimensionless functional equation for the
specific entropy and compare it with the known equation.
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5. Transient and multidimensional
heat conduction

When I was a lad, winter was really cold. It would get so cold that if you
went outside with a cup of hot coffee it would freeze. I mean it would freeze
fast. That cup of hot coffee would freeze so fast that it would still be hot
after it froze. Now that’s cold! Old North-woods tall-tale

5.1 Introduction

James Watt, of course, did not invent the steam engine. What he did do
was to eliminate a destructive transient heating and cooling process that
wasted a great amount of energy. By 1763, the great puffing engines of
Savery and Newcomen had been used for over half a century to pump the
water out of Cornish mines and to do other tasks. In that year the young
instrument maker, Watt, was called upon to renovate the Newcomen en-
gine model at the University of Glasgow. The Glasgow engine was then
being used as a demonstration in the course on natural philosophy. Watt
did much more than just renovate the machine—he first recognized, and
eventually eliminated, its major shortcoming.

The cylinder of Newcomen’s engine was cold when steam entered it
and nudged the piston outward. A great deal of steam was wastefully
condensed on the cylinder walls until they were warm enough to accom-
modate it. When the cylinder was filled, the steam valve was closed and
jets of water were activated inside the cylinder to cool it again and con-
dense the steam. This created a powerful vacuum, which sucked the
piston back in on its working stroke. First, Watt tried to eliminate the
wasteful initial condensation of steam by insulating the cylinder. But
that simply reduced the vacuum and cut the power of the working stroke.

181
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Then he realized that, if he led the steam outside to a separate condenser,
the cylinder could stay hot while the vacuum was created.

The separate condenser was the main issue in Watt’s first patent
(1769), and it immediately doubled the thermal efficiency of steam en-
gines from a maximum of 1.1% to 2.2%. By the time Watt died in 1819, his
invention had led to efficiencies of 5.7%, and his engine had altered the
face of the world by powering the Industrial Revolution. And from 1769
until today, the steam power cycles that engineers study in their ther-
modynamics courses are accurately represented as steady flow—rather
than transient—processes.

The repeated transient heating and cooling that occurred in New-
comen’s engine was the kind of process that today’s design engineer
might still carelessly ignore, but the lesson that we learn from history
is that transient heat transfer can be of overwhelming importance. To-
day, for example, designers of food storage enclosures know that such
systems need relatively little energy to keep food cold at steady condi-
tions. The real cost of operating them results from the consumption
of energy needed to bring the food down to a low temperature and the
losses resulting from people entering and leaving the system with food.
The transient heat transfer processes are a dominant concern in the de-
sign of food storage units.

We therefore turn our attention, first, to an analysis of unsteady heat
transfer, beginning with a more detailed consideration of the lumped-
capacity system that we looked at in Section 1.3.

5.2 Lumped-capacity solutions

We begin by looking briefly at the dimensional analysis of transient con-
duction in general and of lumped-capacity systems in particular.

Dimensional analysis of transient heat conduction

We first consider a fairly representative problem of one-dimensional tran-
sient heat conduction:

∂2T
∂x2

= 1
α
∂T
∂t

with




i.c.: T(t = 0) = Ti
b.c.: T(t > 0, x = 0) = T1

b.c.: − k
∂T
∂x

∣∣∣∣
x=L

= h(T − T1)x=L
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The solution of this problem must take the form of the following dimen-
sional functional equation:

T − T = fn
[
(Ti − T1), x, L, t,α,h, k

]
There are eight variables in four dimensions (◦C, s, m, W), so we look
for 8 − 4 = 4 pi-groups. We anticipate, from Section 4.3, that they will
include

Θ ≡ (T − T1)
(Ti − T1)

, ξ ≡ x
L
, and Bi ≡ hL

k
,

and we write

Θ = fn (ξ,Bi,Π4) (5.1)

One possible candidate for Π4, which is independent of the other three,
is

Π4 ≡ Fo = αt/L2 (5.2)

where Fo is the Fourier number. Another candidate that we use later is

Π4 ≡ ζ = x√
αt

(
this is exactly

ξ√
Fo

)
(5.3)

If the problem involved only b.c.’s of the first kind, the heat transfer
coefficient, h—and hence the Biot number—would go out of the problem.
Then the dimensionless function eqn. (5.1) is

Θ = fn (ξ, Fo) (5.4)

By the same token, if the b.c.’s had introduced different values of h at
x = 0 and x = L, two Biot numbers would appear in the solution.

The lumped-capacity problem is particularly interesting from the stand-
point of dimensional analysis. In this case, neither k nor x enters the
problem because we do not retain any features of the internal conduc-
tion problem. Therefore, we keep only the denominator of α, namely
ρc. Furthermore, we do not have to separate ρ and c because they only
appear as a product. Finally, we use the volume-to-external-area ratio,
V/A, as a characteristic length. Thus, for the transient lumped-capacity
problem, the dimensional equation is

T − T∞ = fn
[
(Ti − T∞) , ρc, V/A,h, t

]
(5.5)
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Figure 5.1 A simple
resistance-capacitance circuit.

With six variables in the dimensions J, ◦C, m, and s, only two pi-groups
will appear in the dimensionless function equation.

Θ = fn

(
hAt
ρcV

)
= fn

(
t
T

)
(5.6)

This is exactly the form of the simple lumped-capacity solution, eqn. (1.22).
Notice, too, that the group t/T can be viewed as

t
T
= hk(V/A)t
ρc(V/A)2k

= h(V/A)
k

· αt
(V/A)2

= Bi Fo (5.7)

Electrical and mechanical analogies to the
lumped-thermal-capacity problem

The term capacitance is adapted from electrical circuit theory to the heat
transfer problem. Therefore, we sketch a simple resistance-capacitance
circuit in Fig. 5.1. The capacitor is initially charged to a voltage, Eo. When
the switch is suddenly opened, the capacitor discharges through the re-
sistor and the voltage drops according to the relation

dE
dt

+ E
RC

= 0 (5.8)

The solution of eqn. (5.8) with the i.c. E(t = 0) = Eo is

E = Eo e−t/RC (5.9)

and the current can be computed from Ohm’s law, once E(t) is known.

I = E
R

(5.10)

Normally, in a heat conduction problem the thermal capacitance,
ρcV , is distributed in space. But when the Biot number is small, T(t)
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is uniform in the body and we can lump the capacitance into a single
circuit element. The thermal resistance is 1/hA, and the temperature
difference (T − T∞) is analogous to E(t). Thus, the thermal response,
analogous to eqn. (5.9), is [see eqn. (1.22)]

T − T∞ = (Ti − T∞) exp

(
−hAt
ρcV

)

Notice that the electrical time constant, analogous to ρcV/hA, is RC .
Now consider a slightly more complex system. Figure 5.2 shows a

spring-mass-damper system. The well-known response equation (actu-
ally, a force balance) for this system is

m︸︷︷︸

What is the mass analogous to?

d2x
dt2

+ c︸︷︷︸

the damping coefficient is analogous to R or to ρcV

dx
dt

+ k︸︷︷︸
where k is analogous to 1/C or to hA

x = F(t) (5.11)

A term analogous to mass would arise from electrical inductance, but we

Figure 5.2 A spring-mass-damper
system with a forcing function.

did not include it in the electrical circuit. Mass has the effect of carrying
the system beyond its final equilibrium point. Thus, in an underdamped
mechanical system, we might obtain the sort of response shown in Fig. 5.3
if we specified the velocity at x = 0 and provided no forcing function.
Electrical inductance provides a similar effect. But the Second Law of
Thermodynamics does not permit temperatures to overshoot their equi-
librium values spontaneously. There are no physical elements analogous
to mass or inductance in thermal systems.



186 Transient and multidimensional heat conduction §5.2

Figure 5.3 Response of an unforced
spring-mass-damper system with an
initial velocity.

Next, consider another mechanical element that does have a ther-
mal analogy—namely, the forcing function, F . We consider a (massless)
spring-damper system with a forcing function F that probably is time-
dependent, and we ask: “What might a thermal forcing function look
like?”

Lumped-capacity solution with a variable ambient temperature

To answer the preceding question, let us suddenly immerse an object at
a temperature T = Ti, with Bi 1, into a cool bath whose temperature is
rising as T∞(t) = Ti+bt, where Ti and b are constants. Then eqn. (1.20)
becomes

d(T − Ti)
dt

= −T − T∞
T

= −T − Ti − bt
T

where we have arbitrarily subtracted Ti under the differential. Then

d(T − Ti)
dt

+ T − Ti
T

= bt
T

(5.12)

To solve eqn. (5.12) we must first recall that the general solution of
a linear ordinary differential equation with constant coefficients is equal
to the sum of any particular integral of the complete equation and the
general solution of the homogeneous equation. We know the latter; it
is T − Ti = (constant) exp(−t/T ). A particular integral of the complete
equation can often be formed by guessing solutions and trying them in
the complete solution. Here we discover that

T − Ti = bt − bT
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satisfies eqn. (5.12). The general solution of the complete eqn. (5.12) is
thus

T − Ti = C1e−t/T + b(t − T ) (5.13)

Example 5.1

The flow rates of hot and cold water are regulated into a mixing cham-
ber. We measure the temperature of the water as it leaves, using a
thermometer with a time constant, T . On a particular day, the sys-
tem started with cold water at T = Ti in the mixing chamber. Then
hot water is added in such a way that the outflow temperature rises
linearly, as shown in Fig. 5.4, with Texit flow = Ti + bt. How will the
thermometer report the temperature variation?

Solution. The initial condition in eqn. (5.13), which describes this
process, is T − Ti = 0 at t = 0. Substituting eqn. (5.13) in the i.c., we
get

0 = C1 − bT so C1 = bT

and the response equation is

T − (Ti + bt) = bT
(
e−t/T − 1

)
(5.14)

This result is graphically shown in Fig. 5.4. Notice that the ther-
mometer reading reflects a transient portion, bTe−t/T , which decays
for a few time constants and then can be neglected, and a steady
portion, Ti+b(t−T ), which persists thereafter. When the steady re-
sponse is established, the thermometer follows the bath with a tem-
perature lag of bT . This constant error is reduced when either T or
the rate of temperature increase, b, is reduced.

Second-order lumped-capacity systems

Now we look at situations in which two lumped-thermal-capacity systems
are connected in series. Such an arrangement is shown in Fig. 5.5. Heat is
transferred through two slabs with an interfacial resistance, h−1

c between
them. We shall require that hcL1/k1, hcL2/k2, and hL2/k2 are all much
less than unity so that it will be legitimate to lump the thermal capaci-
tance of each slab. The differential equations dictating the temperature
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Figure 5.4 Response of a thermometer to a linearly increasing
ambient temperature.

response of each slab are then

slab 1 : −(ρcV)1
dT1

dt
= hcA(T1 − T2) (5.15)

slab 2 : −(ρcV)2
dT2

dt
= hA(T2 − T∞)− hcA(T1 − T2) (5.16)

and the initial conditions on the temperatures T1 and T2 are

T1(t = 0) = T2(t = 0) = Ti (5.17)

We next identify two time constants for this problem:1

T1 ≡ (ρcV)1
/
hcA and T2 ≡ (ρcV)2

/
hA

Then eqn. (5.15) becomes

T2 = T1
dT1

dt
+ T1 (5.18)

1Notice that we could also have used (ρcV)2/hcA for T2 since both hc and h act on
slab 2. The choice is arbitrary.
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Figure 5.5 Two slabs conducting in series through an interfa-
cial resistance.

which we substitute in eqn. (5.16) to get

(
T1
dT1

dt
+ T1 − T∞

)
+ hc

h
T1
dT1

dt
= T1T2

d2T1

dt2
− T2

dT1

dt

or

d2T1

dt2
+

[
1
T1
+ 1
T2
+ hc
hT2︸ ︷︷ ︸

≡b

]
dT1

dt
+ T1 − T∞

T1T2︸ ︷︷ ︸
c(T1 − T∞)

= 0 (5.19a)

if we call T1 − T∞ ≡ θ, then eqn. (5.19a) can be written as

d2θ
dt2

+ b
dθ
dt

+ cθ = 0 (5.19b)

Thus we have reduced the pair of first-order equations, eqn. (5.15) and
eqn. (5.16), to a single second-order equation, eqn. (5.19b).

The general solution of eqn. (5.19b) is obtained by guessing a solution
of the form θ = C1eDt . Substitution of this guess into eqn. (5.19b) gives

D2 + bD + c = 0 (5.20)

from which we find that D = −(b/2) ± √
(b/2)2 − c. This gives us two

values of D, from which we can get two exponential solutions. By adding
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them together, we form a general solution:

θ = C1 exp


−b

2
+

√(
b
2

)2

− c


 t + C2 exp


−b

2
−

√(
b
2

)2

− c


 t
(5.21)

To solve for the two constants we first substitute eqn. (5.21) in the
first of i.c.’s (5.17) and get

Ti − T∞ = θi = C1 + C2 (5.22)

The second i.c. can be put into terms of T1 with the help of eqn. (5.15):

−dT1

dt

∣∣∣∣
t=0

= hcA
(ρcV)1

(T1 − T2)t=0 = 0

We substitute eqn. (5.21) in this and obtain

0 =

−b

2
+

√(
b
2

)2

− c


C1 +


−b

2
−

√(
b
2

)2

− c


 C2︸ ︷︷ ︸
= θi − C1

so

C1 = −θi
[
−b/2− √

(b/2)2 − c
2
√
(b/2)2 − c

]

and

C2 = θi

[
−b/2+ √

(b/2)2 − c
2
√
(b/2)2 − c

]

So we obtain at last:

T1 − T∞
Ti − T∞

≡ θ
θi
= b/2+ √

(b/2)2 − c
2
√
(b/2)2 − c

exp


−b

2
+

√(
b
2

)2

− c


 t

+ −b/2+ √
(b/2)2 − c

2
√
(b/2)2 − c

exp


−b

2
−

√(
b
2

)2

− c


 t

(5.23)

This is a pretty complicated result—all the more complicated when
we remember that b involves three algebraic terms [recall eqn. (5.19a)].
Yet there is nothing very sophisticated about it; it is easy to understand.
A system involving three capacitances in series would similarly yield a
third-order equation of correspondingly higher complexity, and so forth.
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Figure 5.6 The transient cooling of a
slab; ξ = (x/L)+ 1.

5.3 Transient conduction in a one-dimensional slab

We next extend consideration to heat flow in bodies whose internal re-
sistance is significant—to situations in which the lumped capacitance
assumption is no longer appropriate. When the temperature within, say,
a one-dimensional body varies with position as well as time, we must
solve the heat diffusion equation for T(x, t). We shall do this somewhat
complicated task for the simplest case and then look at the results of
such calculations in other situations.

A simple slab, shown in Fig. 5.6, is initially at a temperature Ti. The
temperature of the surface of the slab is suddenly changed to Ti, and we
wish to calculate the interior temperature profile as a function of time.
The heat conduction equation is

∂2T
∂x2

= 1
α
∂T
∂t

(5.24)

with the following b.c.’s and i.c.:

T(−L, t > 0) = T(L, t > 0) = T1 and T(x, t = 0) = Ti (5.25)

In fully dimensionless form, eqn. (5.24) and eqn. (5.25) are

∂2Θ
∂ξ2

= ∂Θ
∂Fo

(5.26)
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and

Θ(0, Fo) = Θ(2, Fo) = 0 and Θ(ξ,0) = 1 (5.27)

where we have nondimensionalized the problem in accordance with eqn.
(5.4), using Θ ≡ (T − T1)/(Ti − T1) and Fo ≡ αt/L2; but for convenience
in solving the equation, we have set ξ equal to (x/L)+ 1 instead of x/L.

The general solution of eqn. (5.26) may be found using the separation
of variables technique described in Sect. 4.2, leading to the dimensionless
form of eqn. (4.11):

Θ = e−λ̂
2Fo [

G sin(λ̂ξ)+ E cos(λ̂ξ)
]

(5.28)

Direct nondimensionalization of eqn. (4.11) would show that λ̂ ≡ λL,
since λ had units of (length)−1. The solution therefore appears to have
introduced a fourth dimensionless group, λ̂. This needs explanation. The
number λ, which was introduced in the separation-of-variables process,
is called an eigenvalue.2 In the present problem, λ̂ = λL will turn out to
be a number—or rather a sequence of numbers—that is independent of
system parameters.

Substituting the general solution, eqn. (5.28), in the first b.c. gives

0 = e−λ̂
2Fo (0+ E) so E = 0

and substituting it in the second yields

0 = e−λ̂
2Fo[G sin 2λ̂

]
so either G = 0

or

2λ̂ = 2λ̂n = nπ, n = 0,1,2, . . .

In the second case, we are presented with two choices. The first,
G = 0, would give Θ ≡ 0 in all situations, so that the initial condition
could never be accommodated. (This is what mathematicians call a trivial
solution.) The second choice, λ̂n = nπ/2, actually yields a string of
solutions, each of the form

Θ = Gn e−n
2π2Fo/4 sin

(
nπ
2
ξ
)

(5.29)

2The word eigenvalue is a curious hybrid of the German term eigenwert and its
English translation, characteristic value.
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where Gn is the constant appropriate to the nth one of these solutions.
We still face the problem that none of eqns. (5.29) will fit the initial

condition, Θ(ξ,0) = 1. To get around this, we remember that the sum of
any number of solutions of a linear differential equation is also a solution.
Then we write

Θ =
∞∑
n=1

Gn e−n
2π2Fo/4 sin

(
n
π
2
ξ
)

(5.30)

where we drop n = 0 since it gives zero contribution to the series. And
we arrive, at last, at the problem of choosing the Gn’s so that eqn. (5.30)
will fit the initial condition.

Θ (ξ,0) =
∞∑
n=1

Gn sin
(
n
π
2
ξ
)
= 1 (5.31)

The problem of picking the values of Gn that will make this equation
true is called “making a Fourier series expansion” of the function f(ξ) =
1. We shall not pursue strategies for making Fourier series expansions
in any general way. Instead, we merely show how to accomplish the task
for the particular problem at hand. We begin with a mathematical trick.
We multiply eqn. (5.31) by sin(mπ/2), where m may or may not equal
n, and we integrate the result between ξ = 0 and 2.

∫ 2

0
sin

(
mπ

2
ξ
)
dξ =

∞∑
n=1

Gn

∫ 2

0
sin

(
mπ

2
ξ
)

sin
(
nπ
2
ξ
)
dξ (5.32)

(The interchange of summation and integration turns out to be legitimate,
although we have not proved, here, that it is.3) With the help of a table
of integrals, we find that

∫ 2

0
sin

(
mπ

2
ξ
)

sin
(
nπ
2
ξ
)
dξ =

{
0 for n ≠m
1 for n =m

Thus, when we complete the integration of eqn. (5.32), we get

− 2
mπ

cos
(
mπ

2
ξ
)∣∣∣∣∣

2

0

=
∞∑
n=1

Gn ×
{

0 for n ≠m
1 for n =m

3What is required is that the series in eqn. (5.31) be uniformly convergent.
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This reduces to

− 2
mπ

[
(−1)n − 1

]
= Gn

so

Gn = 4
nπ

where n is an odd number

Substituting this result into eqn. (5.30), we finally obtain the solution to
the problem:

Θ (ξ, Fo) = 4
π

∞∑
n=odd

1
n
e−(nπ/2)2Fo sin

(
nπ
2
ξ
)

(5.33)

Equation (5.33) admits a very nice simplification for large time (or at
large Fo). Suppose that we wish to evaluate Θ at the outer center of the
slab—at x = 0 or ξ = 1. Then

Θ (0, Fo) = 4
π
×

exp

[
−

(
π
2

)2

Fo

]
︸ ︷︷ ︸
= 0.085 at Fo = 1
= 0.781 at Fo = 0.1
= 0.976 at Fo = 0.01

− 1
3

exp

[
−

(
3π
2

)2

Fo

]
︸ ︷︷ ︸

� 10−10 at Fo = 1
= 0.036 at Fo = 0.1
= 0.267 at Fo = 0.01

+ 1
5

exp

[
−

(
5π
2

)2

Fo

]
︸ ︷︷ ︸

� 10−27 at Fo = 1
= 0.0004 at Fo = 0.1
= 0.108 at Fo = 0.01

+· · ·



Thus for values of Fo somewhat greater than 0.1, only the first term in
the series need be used in the solution (except at points very close to the
boundaries). We discuss these one-term solutions in Sect. 5.5. Before we
move to this matter, let us see what happens to the preceding problem
if the slab is subjected to b.c.’s of the third kind.

Suppose that the walls of the slab had been cooled by symmetrical
convection such that the b.c.’s were

h(T∞ − T)x=−L = −k∂T∂x
∣∣∣∣
x=−L

and h(T − T∞)x=L = −k ∂T
∂x

∣∣∣∣
x=L

or in dimensionless form, usingΘ ≡ (T−T∞)/(Ti−T∞) and ξ = (x/L)+1,

−Θ
∣∣∣∣
ξ=0

= − 1
Bi

∂Θ
∂ξ

∣∣∣∣∣
ξ=0

and
∂Θ
∂ξ

∣∣∣∣∣
ξ=1

= 0
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Table 5.1 Terms of series solutions for slabs, cylinders, and
spheres.

An fn Equation for λ̂n

Slab
2 sin λ̂n

λ̂n + sin λ̂n cos λ̂n
cos

(
λ̂n

x
L

)
cot λ̂n = λ̂n

BiL

Cylinder
2 J1(λ̂n)

λ̂n
[
J2

0(λ̂n)+ J2
1(λ̂n)

] J0

(
λ̂n

r
ro

)
λ̂n J1(λ̂n) = Biro J0(λ̂n)

Sphere 2
sin λ̂n − λ̂n cos λ̂n
λ̂n − sin λ̂n cos λ̂n

(
ro
λ̂n r

)
sin

(
λ̂n r
ro

)
λ̂n cot λ̂n = 1− Biro

The solution is somewhat harder to find than eqn. (5.33) was, but the
result is4

Θ =
∞∑
n=1

exp
(
−λ̂2

n Fo
)(

2 sin λ̂n cos[λ̂n(ξ − 1)]
λ̂n + sin λ̂n cos λ̂n

)
(5.34)

where the values of λ̂n are given as a function of n and Bi by the tran-
scendental equation

cot λ̂n = λ̂n
Bi

(5.35)

The successive positive roots of this equation, which are λ̂n = λ̂1, λ̂2,
λ̂3, . . . , depend upon Bi. Thus, Θ = fn(ξ, Fo,Bi), as we would expect. This
result, although more complicated than the result for b.c.’s of the first
kind, still reduces to a single term for Fo � 0.2.

Similar series solutions can be constructed for cylinders and spheres
that are convectively cooled at their outer surface, r = ro. The solutions
for slab, cylinders, and spheres all have the form

Θ = T − T∞
T0 − T∞

=
∞∑
n=1

An exp
(
−λ̂2

n Fo
)
fn (5.36)

where the coefficients An, the functions fn, and the equations for the
dimensionless eigenvalues λ̂n are given in Table 5.1.

4See, for example, [5.1, §2.3.4] or [5.2, §3.4.3] for details of this calculation.
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5.4 Temperature-response charts

Figure 5.7 is a graphical presentation of eqn. (5.34) for 0 B Fo B 1.5 and
for six x-planes in the slab. (Remember that the x-coordinate goes from
zero in the center to L on the boundary, while ξ goes from 0 up to 2 in
the preceding solution.)

Notice that, with the exception of points for which 1/Bi < 0.25 on
the outside boundary, the curves are all straight lines when Fo � 0.2.
Since the coordinates are semilogarithmic, this portion of the graph cor-
responds to the lead term—the only term that retains any importance—
in eqn. (5.34). When we take the logarithm of the one-term version of
eqn. (5.34), the result is

lnΘ � ln

[
2 sin λ̂1 cos[λ̂1(ξ − 1)]
λ̂1 + sin λ̂1 cos λ̂1︸ ︷︷ ︸
Θ-intercept at Fo = 0 of
the straight portion of

the curve

]
− λ̂2

1 Fo︸ ︷︷ ︸
slope of the

straight portion
of the curve

If Fo is greater than 1.5, the following options are then available to us for
solving the problem:

• Extrapolate the given curves using a straightedge.

• EvaluateΘ using the first term of eqn. (5.34), as discussed in Sect. 5.5.

• If Bi is small, use a lumped-capacity result.

Figure 5.8 and Fig. 5.9 are similar graphs for cylinders and spheres.
Everything that we have said in general about Fig. 5.7 is also true for
these graphs. They were simply calculated from different solutions, and
the numerical values on them are somewhat different. These charts are
from [5.3, Chap. 5], although such charts are often called Heisler charts,
after a collection of related charts subsequently published by Heisler
[5.4].

Another useful kind of chart derivable from eqn. (5.34) is one that
gives heat removal from a body up to a time of interest:

∫ t

0
Qdt = −

⌠⌡ t

0

kA
∂T
∂x

∣∣∣∣
surface

dt

= −
⌠⌡ Fo

0

kA
Ti − T∞

L
∂Θ
∂ξ

∣∣∣∣∣
surface

(
L2

α

)
dFo
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Dividing this by the total energy of the body above T∞, we get a quan-
tity, Φ, which approaches unity as t →∞ and the energy is all transferred
to the surroundings:

Φ ≡

∫ t

0
Qdt

ρcV(Ti − T∞)
= −

⌠⌡ Fo

0

∂Θ
∂ξ

∣∣∣∣∣
surface

dFo (5.37)

where the volume, V = AL. Substituting the appropriate temperature
distribution [e.g., eqn. (5.34) for a slab] in eqn. (5.37), we obtain Φ(Fo,Bi)
in the form of an infinite series

Φ (Fo, Bi) = 1−
∞∑
n=1

Dn exp
(
−λ̂2

n Fo
)

(5.38)

The coefficients Dn are different functions of λ̂n — and thus of Bi — for
slabs, cylinders, and spheres (e.g., for a slab Dn = An sin λ̂n/λ̂n). These
functions can be used to plot Φ(Fo,Bi) once and for all. Such curves are
given in Fig. 5.10.

The quantity Φ has a close relationship to the mean temperature of
a body at any time, T(t). Specifically, the energy lost as heat by time t
determines the difference between the initial temperature and the mean
temperature at time t

ρcV
[
Ti − T(t)

] = ∫ t

0
Qdt. (5.39)

Thus, if we define Θ as shown,

Θ ≡ T(t)− T∞
Ti − T∞

= 1−

∫ t

0
Q(t)dt

ρcV(Ti − T∞)
= 1− Φ. (5.40)

Example 5.2

A dozen approximately spherical apples, 10 cm in diameter are taken
from a 30◦C environment and laid out on a rack in a refrigerator at
5◦C. They have approximately the same physical properties as water,
and h is approximately 6 W/m2K as the result of natural convection.
What will be the temperature of the centers of the apples after 1 hr?
How long will it take to bring the centers to 10◦C? How much heat
will the refrigerator have to carry away to get the centers to 10◦C?



Figure 5.10 The heat removal from suddenly-cooled bodies as
a function of h and time.
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Solution. After 1 hr, or 3600 s:

Fo = αt
r2
o
=

(
k
ρc

)
20◦C

3600 s
(0.05 m)2

= (0.603 J/m·s·K)(3600 s)
(997.6 kg/m3)(4180 J/kg·K)(0.0025 m2)

= 0.208

Furthermore, Bi−1 = (hro/k)−1 = [6(0.05)/0.603]−1 = 2.01. There-
fore, we read from Fig. 5.9 in the upper left-hand corner:

Θ = 0.85

After 1 hr:

Tcenter = 0.85(30− 5)◦C+ 5◦C = 26.3◦C

To find the time required to bring the center to 10◦C, we first
calculate

Θ = 10− 5
30− 5

= 0.2

and Bi−1 is still 2.01. Then from Fig. 5.9 we read

Fo = 1.29 = αt
r2
o

so

t = 1.29(997.6)(4180)(0.0025)
0.603

= 22,300 s = 6 hr 12 min

Finally, we look up Φ at Bi = 1/2.01 and Fo = 1.29 in Fig. 5.10, for
spheres:

Φ = 0.80 =

∫ t

0
Qdt

ρc
(

4
3πr

3
0

)
(Ti − T∞)

so∫ t

0
Qdt = 997.6(4180)

(
4
3
π(0.05)3

)
(25)(0.80) = 43,668 J/apple

Therefore, for the 12 apples,

total energy removal = 12(43.67) = 524 kJ
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The temperature-response charts in Fig. 5.7 through Fig. 5.10 are with-
out doubt among the most useful available since they can be adapted to
a host of physical situations. Nevertheless, hundreds of such charts have
been formed for other situations, a number of which have been cataloged
by Schneider [5.5]. Analytical solutions are available for hundreds more
problems, and any reader who is faced with a complex heat conduction
calculation should consult the literature before trying to solve it. An ex-
cellent place to begin is Carslaw and Jaeger’s comprehensive treatise on
heat conduction [5.6].

Example 5.3

A 1 mm diameter Nichrome (20% Ni, 80% Cr) wire is simultaneously
being used as an electric resistance heater and as a resistance ther-
mometer in a liquid flow. The laboratory workers who operate it are
attempting to measure the boiling heat transfer coefficient, h, by sup-
plying an alternating current and measuring the difference between
the average temperature of the heater, Tav, and the liquid tempera-
ture, T∞. They get h = 30,000 W/m2K at a wire temperature of 100◦C
and are delighted with such a high value. Then a colleague suggests
thath is so high because the surface temperature is rapidly oscillating
as a result of the alternating current. Is this hypothesis correct?

Solution. Heat is being generated in proportion to the product of
voltage and current, or as sin2 ωt, where ω is the frequency of the
current in rad/s. If the boiling action removes heat rapidly enough in
comparison with the heat capacity of the wire, the surface tempera-
ture may well vary significantly. This transient conduction problem
was first solved by Jeglic in 1962 [5.7]. It was redone in a different
form two years later by Switzer and Lienhard (see, e.g. [5.8]), who gave
response curves in the form

Tmax − Tav

Tav − T∞
= fn (Bi,ψ) (5.41)

where the left-hand side is the dimensionless range of the tempera-
ture oscillation, and ψ = ωδ2α, where δ is a characteristic length.
Because this problem is common and the solution is not widely avail-
able, we include the curves for flat plates and cylinders in Fig. 5.11
and Fig. 5.12 respectively.
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In the present case:

Bi = h radius
k

= 30,000(0.0005)
13.8

= 1.09

ωr2

α
= [2π(60)](0.0005)2

0.00000343
= 27.5

and from the chart for cylinders, Fig. 5.12, we find that

Tmax − Tav

Tav − T∞
� 0.04

A temperature fluctuation of only 4% is probably not serious. It there-
fore appears that the experiment was valid.

5.5 One-term solutions

As we have noted previously, when the Fourier number is greater than 0.2
or so, the series solutions from eqn. (5.36) may be approximated using
only their first term:

Θ ≈ A1 · f1 · exp
(
−λ̂2

1 Fo
)
. (5.42)

Likewise, the fractional heat loss, Φ, or the mean temperature Θ from
eqn. 5.40, can be approximated using just the first term of eqn. (5.38):

Θ = 1− Φ ≈ D1 exp
(
−λ̂2

1 Fo
)
. (5.43)

Table 5.2 lists the values of λ̂1, A1, and D1 for slabs, cylinders, and
spheres as a function of the Biot number. The one-term solution’s er-
ror in Θ is less than 0.1% for a sphere with Fo ≥ 0.28 and for a slab with
Fo ≥ 0.43. These errors are largest for Biot numbers near unity. If high
accuracy is not required, these one-term approximations may generally
be used whenever Fo ≥ 0.2



Table 5.2 One-term coefficients for convective cooling [5.1].

Plate Cylinder Sphere
Bi

λ̂1 A1 D1 λ̂1 A1 D1 λ̂1 A1 D1

0.01 0.09983 1.0017 1.0000 0.14124 1.0025 1.0000 0.17303 1.0030 1.0000
0.02 0.14095 1.0033 1.0000 0.19950 1.0050 1.0000 0.24446 1.0060 1.0000
0.05 0.22176 1.0082 0.9999 0.31426 1.0124 0.9999 0.38537 1.0150 1.0000

0.10 0.31105 1.0161 0.9998 0.44168 1.0246 0.9998 0.54228 1.0298 0.9998
0.15 0.37788 1.0237 0.9995 0.53761 1.0365 0.9995 0.66086 1.0445 0.9996
0.20 0.43284 1.0311 0.9992 0.61697 1.0483 0.9992 0.75931 1.0592 0.9993
0.30 0.52179 1.0450 0.9983 0.74646 1.0712 0.9983 0.92079 1.0880 0.9985
0.40 0.59324 1.0580 0.9971 0.85158 1.0931 0.9970 1.05279 1.1164 0.9974
0.50 0.65327 1.0701 0.9956 0.94077 1.1143 0.9954 1.16556 1.1441 0.9960
0.60 0.70507 1.0814 0.9940 1.01844 1.1345 0.9936 1.26440 1.1713 0.9944
0.70 0.75056 1.0918 0.9922 1.08725 1.1539 0.9916 1.35252 1.1978 0.9925
0.80 0.79103 1.1016 0.9903 1.14897 1.1724 0.9893 1.43203 1.2236 0.9904
0.90 0.82740 1.1107 0.9882 1.20484 1.1902 0.9869 1.50442 1.2488 0.9880

1.00 0.86033 1.1191 0.9861 1.25578 1.2071 0.9843 1.57080 1.2732 0.9855
1.10 0.89035 1.1270 0.9839 1.30251 1.2232 0.9815 1.63199 1.2970 0.9828
1.20 0.91785 1.1344 0.9817 1.34558 1.2387 0.9787 1.68868 1.3201 0.9800
1.30 0.94316 1.1412 0.9794 1.38543 1.2533 0.9757 1.74140 1.3424 0.9770
1.40 0.96655 1.1477 0.9771 1.42246 1.2673 0.9727 1.79058 1.3640 0.9739
1.50 0.98824 1.1537 0.9748 1.45695 1.2807 0.9696 1.83660 1.3850 0.9707
1.60 1.00842 1.1593 0.9726 1.48917 1.2934 0.9665 1.87976 1.4052 0.9674
1.80 1.04486 1.1695 0.9680 1.54769 1.3170 0.9601 1.95857 1.4436 0.9605
2.00 1.07687 1.1785 0.9635 1.59945 1.3384 0.9537 2.02876 1.4793 0.9534
2.20 1.10524 1.1864 0.9592 1.64557 1.3578 0.9472 2.09166 1.5125 0.9462
2.40 1.13056 1.1934 0.9549 1.68691 1.3754 0.9408 2.14834 1.5433 0.9389

3.00 1.19246 1.2102 0.9431 1.78866 1.4191 0.9224 2.28893 1.6227 0.9171
4.00 1.26459 1.2287 0.9264 1.90808 1.4698 0.8950 2.45564 1.7202 0.8830
5.00 1.31384 1.2402 0.9130 1.98981 1.5029 0.8721 2.57043 1.7870 0.8533
6.00 1.34955 1.2479 0.9021 2.04901 1.5253 0.8532 2.65366 1.8338 0.8281
8.00 1.39782 1.2570 0.8858 2.12864 1.5526 0.8244 2.76536 1.8920 0.7889

10.00 1.42887 1.2620 0.8743 2.17950 1.5677 0.8039 2.83630 1.9249 0.7607
20.00 1.49613 1.2699 0.8464 2.28805 1.5919 0.7542 2.98572 1.9781 0.6922
50.00 1.54001 1.2727 0.8260 2.35724 1.6002 0.7183 3.07884 1.9962 0.6434

100.00 1.55525 1.2731 0.8185 2.38090 1.6015 0.7052 3.11019 1.9990 0.6259
∞ 1.57080 1.2732 0.8106 2.40483 1.6020 0.6917 3.14159 2.0000 0.6079

207



208 Transient and multidimensional heat conduction §5.6

5.6 Transient heat conduction to a semi-infinite
region

Introduction

Bronowksi’s classic television series, The Ascent of Man [5.9], included
a brilliant reenactment of the ancient ceremonial procedure by which
the Japanese forged Samurai swords (see Fig. 5.13). The metal is heated,
folded, beaten, and formed, over and over, to create a blade of remarkable
toughness and flexibility. When the blade is formed to its final configu-
ration, a tapered sheath of clay is baked on the outside of it, so the cross
section is as shown in Fig. 5.13. The red-hot blade with the clay sheath is
then subjected to a rapid quenching, which cools the uninsulated cutting
edge quickly and the back part of the blade very slowly. The result is a
layer of case-hardening that is hardest at the edge and less hard at points
farther from the edge.

Figure 5.13 The ceremonial case-hardening of a Samurai sword.
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Figure 5.14 The initial cooling of a thin
sword blade. Prior to t = t4, the blade
might as well be infinitely thick insofar as
cooling is concerned.

The blade is then tough and ductile, so it will not break, but has a fine
hard outer shell that can be honed to sharpness. We need only look a
little way up the side of the clay sheath to find a cross section that was
thick enough to prevent the blade from experiencing the sudden effects
of the cooling quench. The success of the process actually relies on the
failure of the cooling to penetrate the clay very deeply in a short time.

Now we wish to ask: “How can we say whether or not the influence
of a heating or cooling process is restricted to the surface of a body?”
Or if we turn the question around: “Under what conditions can we view
the depth of a body as infinite with respect to the thickness of the region
that has felt the heat transfer process?”

Consider next the cooling process within the blade in the absence of
the clay retardant and when h is very large. Actually, our considerations
will apply initially to any finite body whose boundary suddenly changes
temperature. The temperature distribution, in this case, is sketched in
Fig. 5.14 for four sequential times. Only the fourth curve—that for which
t = t4—is noticeably influenced by the opposite wall. Up to that time,
the wall might as well have infinite depth.

Since any body subjected to a sudden change of temperature is in-
finitely large in comparison with the initial region of temperature change,
we must learn how to treat heat transfer in this period.

Solution aided by dimensional analysis

The calculation of the temperature distribution in a semi-infinite region
poses a difficulty in that we can impose a definite b.c. at only one position—
the exposed boundary. We shall be able to get around that difficulty in a
nice way with the help of dimensional analysis.
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When the one boundary of a semi-infinite region, initially at T = Ti,
is suddenly cooled (or heated) to a new temperature, T∞, as in Fig. 5.14,
the dimensional function equation is

T − T∞ = fn [t, x,α, (Ti − T∞)]

where there is no characteristic length or time. Since there are five vari-
ables in ◦C, s, and m, we should look for two dimensional groups.

T − T∞
Ti − T∞︸ ︷︷ ︸

Θ

= fn

(
x√
αt︸ ︷︷ ︸
ζ

)
(5.44)

The very important thing that we learn from this exercise in dimen-
sional analysis is that position and time collapse into one independent
variable. This means that the heat conduction equation and its b.c.s must
transform from a partial differential equation into a simpler ordinary dif-
ferential equation in the single variable, ζ = x

/√
αt. Thus, we transform

each side of

∂2T
∂x2

= 1
α
∂T
∂t

as follows, where we call Ti − T∞ ≡ ∆T :

∂T
∂t

= (Ti − T∞)
∂Θ
∂t

= ∆T ∂Θ
∂ζ

∂ζ
∂t

= ∆T
(
− x

2t
√
αt

)
∂Θ
∂ζ

;

∂T
∂x

= ∆T ∂Θ
∂ζ

∂ζ
∂x

= ∆T√
αt

∂Θ
∂ζ

;

and
∂2T
∂x2

= ∆T√
αt

∂2Θ
∂ζ2

∂ζ
∂x

= ∆T
αt

∂2Θ
∂ζ2

.

Substituting the first and last of these derivatives in the heat conduction
equation, we get

d2Θ
dζ2

= −ζ
2
dΘ
dζ

(5.45)

Notice that we changed from partial to total derivative notation, since
Θ now depends solely on ζ. The i.c. for eqn. (5.45) is

T(t = 0) = Ti or Θ (ζ →∞) = 1 (5.46)
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and the one known b.c. is

T(x = 0) = T∞ or Θ (ζ = 0) = 0 (5.47)

If we call dΘ/dζ ≡ χ, then eqn. (5.45) becomes the first-order equa-
tion

dχ
dζ

= −ζ
2
χ

which can be integrated once to get

χ ≡ dΘ
dζ

= C1 e−ζ
2/4 (5.48)

and we integrate this a second time to get

Θ = C1

∫ ζ

0
e−ζ

2/4 dζ + Θ(0)︸ ︷︷ ︸
= 0 according

to the b.c.

(5.49)

The b.c. is now satisfied, and we need only substitute eqn. (5.49) in the
i.c., eqn. (5.46), to solve for C1:

1 = C1

∫∞
0
e−ζ

2/4 dζ

The definite integral is given by integral tables as
√
π , so

C1 = 1√
π

Thus the solution to the problem of conduction in a semi-infinite region,
subject to a b.c. of the first kind is

Θ = 1√
π

∫ ζ

0
e−ζ

2/4 dζ = 2√
π

∫ ζ/2

0
e−s

2
ds ≡ erf(ζ/2) (5.50)

The second integral in eqn. (5.50), obtained by a change of variables,
is called the error function (erf). Its name arises from its relationship to
certain statistical problems related to the Gaussian distribution, which
describes random errors. In Table 5.3, we list values of the error function
and the complementary error function, erfc(x) ≡ 1 − erf(x). Equation
(5.50) is also plotted in Fig. 5.15.
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Table 5.3 Error function and complementary error function.

ζ
/
2 erf(ζ/2) erfc(ζ/2) ζ

/
2 erf(ζ/2) erfc(ζ/2)

0.00 0.00000 1.00000 1.10 0.88021 0.11980
0.05 0.05637 0.94363 1.20 0.91031 0.08969
0.10 0.11246 0.88754 1.30 0.93401 0.06599
0.15 0.16800 0.83200 1.40 0.95229 0.04771
0.20 0.22270 0.77730 1.50 0.96611 0.03389
0.30 0.32863 0.67137 1.60 0.97635 0.02365
0.40 0.42839 0.57161 1.70 0.98379 0.01621
0.50 0.52050 0.47950 1.80 0.98909 0.01091
0.60 0.60386 0.39614 1.8214 0.99000 0.01000
0.70 0.67780 0.32220 1.90 0.99279 0.00721
0.80 0.74210 0.25790 2.00 0.99532 0.00468
0.90 0.79691 0.20309 2.50 0.99959 0.00041
1.00 0.84270 0.15730 3.00 0.99998 0.00002

In Fig. 5.15 we see the early-time curves shown in Fig. 5.14 collapse
into a single curve. This is accomplished by the similarity transforma-
tion, as we call it5: ζ/2 = x/2

√
αt. Under this transformation, we see

immediately that the local value of (T−T∞) is more than 99% of (Ti−T∞)
so long as

ζ
2
> 1.8214 or x > 3.64

√
αt (5.51)

Thus, slabs with a half-thickness in excess of 3.64
√
αt are still effectively

semi-infinite.

Example 5.4

For what maximum time can a samurai sword be analyzed as a semi-
infinite region after it is quenched, if it has no clay coating andhexternal

� ∞?

Solution. First, we must guess the half-thickness of the sword (say,
3 mm) and its material (probably wrought iron with an average α

5The transformation is based upon the “similarity” of spatial an temporal changes
in this problem.
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Figure 5.15 Temperature distribution in
a semi-infinite region.

around 1.5× 10−5 m2/s). Then we invert eqn. (5.51) and set x equal
to the half-thickness, so

t B
x2

3.642α
= (0.003 m)2

13.3(1.5)(10)−5 m2/s
= 0.045 s

Thus the quench would be felt at the centerline of the sword within
only 1/20 s. The thermal diffusivity of clay is smaller than that of steel
by a factor of about 30, so the quench time of the coated steel must
continue for over 1 s before the temperature of the steel is affected
at all, if the clay and the sword thicknesses are comparable.

Equation (5.51) provides an interesting foretaste of the notion of a
fluid boundary layer. In the context of Fig. 1.9 and Fig. 1.10, we ob-
serve that free stream flow around an object is disturbed in a thick layer
near the object because the fluid adheres to it. It turns out that the
thickness of this boundary layer of altered flow velocity increases in the
downstream direction. For flow over a flat plate, this thickness is ap-
proximately 4.92

√
νt, where t is the time required for an element of the

stream fluid to move from the leading edge of the plate to a point of inter-
est. This is quite similar to eqn. (5.51), except that the thermal diffusivity,
α, has been replaced by its counterpart, the kinematic viscosity, ν , and
the constant is a bit larger. The velocity profile will resemble Fig. 5.15.

If we repeated the problem with a boundary condition of the third
kind, we would expect to get Θ = Θ(Bi, ζ), except that there is no length,
L, upon which to build a Biot number. Therefore, we must replace L with√
αt, which has the dimension of length, so

Θ = Θ
(
ζ,

h
√
αt
k

)
≡ Θ(ζ, β) (5.52)
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The term ζ ≡ h
√
αt

/
k is like the product: Bi

√
Fo. The solution of this

problem (see, e.g., [5.6], §2.7) can be conveniently written in terms of the
complementary error function, erfc(x) ≡ 1− erf(x):

Θ = erf
ζ
2
+ exp

(
βζ + β2

)[
erfc

(
ζ
2
+ β

)]
(5.53)

This result is plotted in Fig. 5.16.

Example 5.5

Most of us have passed our finger through an 800◦C candle flame and
know that if we limit exposure to about 1/4 s we will not be burned.
Why not?

Solution. The short exposure to the flame causes only a very su-
perficial heating, so we consider the finger to be a semi-infinite region
and go to eqn. (5.53) to calculate (Tburn−Tflame)/(Ti−Tflame). It turns
out that the burn threshold of human skin, Tburn, is about 65◦C. (That
is why 140◦F or 60◦C tap water is considered to be “scalding.”) There-
fore, we shall calculate how long it will take for the surface tempera-
ture of the finger to rise from body temperature (37◦C) to 65◦C, when
it is protected by an assumed h � 100 W/m2·◦C. We shall assume
that the thermal conductivity of human flesh equals that of its major
component—water—and that the thermal diffusivity is equal to the
known value for beef. Then

Θ = 65− 800
37− 800

= 0.963

βζ = hx
k
= 0 since x = 0 at the surface

β2 = h
2
αt
k2

= 1002(0.135x10−6)t
0.632

= 0.0034(t s)

The situation is quite far into the corner of Fig. 5.16. We read β2 �
0.001, which corresponds with t � 0.3 s. For greater accuracy, we
must go to eqn. (5.53):

0.963 = erf 0︸ ︷︷ ︸
=0

+e0.0034t
[

erfc
(

0+
√

0.0034 t
)]



Figure 5.16 The cooling of a semi-infinite region by an envi-
ronment at T∞, through a heat transfer coefficient, h.
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so

0.963 = e0.0034t erfc
√

0.0034 t

By trial and error, we get t � 0.33 s.
Thus it would require about 1/3 s to bring the skin to the burn

point.

Experiment 5.1

Immerse your hand in the subfreezing air in the freezer compartment
of your refrigerator. Next immerse your finger in a mixture of ice cubes
and water, but do not move it. Then, immerse your finger in a mixture of
ice cubes and water , swirling it around as you do so. Describe your initial
sensation in each case, and explain the differences in terms of Fig. 5.16.
What variable has changed from one case to another?

Heat transfer

Heat will be removed from the exposed surface of a semi-infinite region,
with a b.c. of either the first or the third kind, in accordance with Fourier’s
law:

q = −k ∂T
∂x

∣∣∣∣
x=0

= k(T∞ − Ti)√
αt

dΘ
dζ

∣∣∣∣∣
ζ=0

Differentiating Θ as given by eqn. (5.50), we obtain, for the b.c. of the
first kind,

q = k(T∞ − Ti)√
αt

(
1√
π
e−ζ

2/4
)
ζ=0

= k(T∞ − Ti)√
παt

(5.54)

Thus, q decreases with increasing time, as t−1/2. When the temperature
of the surface is first changed, the heat removal rate is enormous. Then
it drops off rapidly.

It often occurs that we suddenly apply a specified input heat flux,
qw , at the boundary of a semi-infinite region. In such a case, we can
differentiate the heat diffusion equation with respect to x, so

α
∂3T
∂x3

= ∂2T
∂t∂x
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When we substitute q = −k∂T/∂x in this, we obtain

α
∂2q
∂x2

= ∂q
∂t

with the b.c.’s:

q(x = 0, t > 0) = qw or
qw − q
qw

∣∣∣∣∣
x=0

= 0

q(x O 0, t = 0) = 0 or
qw − q
qw

∣∣∣∣∣
t=0

= 1

What we have done here is quite elegant. We have made the problem
of predicting the local heat flux q into exactly the same form as that of
predicting the local temperature in a semi-infinite region subjected to a
step change of wall temperature. Therefore, the solution must be the
same:

qw − q
qw

= erf
(

x
2
√
αt

)
. (5.55)

The temperature distribution is obtained by integrating Fourier’s law. At
the wall, for example:

∫ Tw

Ti
dT = −

∫ 0

∞
q
k
dx

where Ti = T(x →∞) and Tw = T(x = 0). Then

Tw = Ti + qw
k

∫∞
0

erfc(x/2
√
αt)dx

This becomes

Tw = Ti + qw
k

√
αt

∫∞
0

erfc(ζ/2)dζ︸ ︷︷ ︸
=2/

√
π

so

Tw(t) = Ti + 2
qw
k

√
αt
π

(5.56)



218 Transient and multidimensional heat conduction §5.6

Figure 5.17 A bubble growing in a
superheated liquid.

Example 5.6 Predicting the Growth Rate of a Vapor Bubble
in an Infinite Superheated Liquid

This prediction is relevant to a large variety of processes, ranging
from nuclear thermodynamics to the direct-contact heat exchange. It
was originally presented by Max Jakob and others in the early 1930s
(see, e.g., [5.10, Chap. I]). Jakob (pronounced Yah′-kob) was an im-
portant figure in heat transfer during the 1920s and 1930s. He left
Nazi Germany in 1936 to come to the United States. We encounter
his name again later.

Figure 5.17 shows how growth occurs. When a liquid is super-
heated to a temperature somewhat above its boiling point, a small
gas or vapor cavity in that liquid will grow. (That is what happens in
the superheated water at the bottom of a teakettle.)

This bubble grows into the surrounding liquid because its bound-
ary is kept at the saturation temperature, Tsat, by the near-equilibrium
coexistence of liquid and vapor. Therefore, heat must flow from the
superheated surroundings to the interface, where evaporation occurs.
So long as the layer of cooled liquid is thin, we should not suffer too
much error by using the one-dimensional semi-infinite region solu-
tion to predict the heat flow.
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Thus, we can write the energy balance at the bubble interface:(
−q W

m2

)(
4πR2 m2

)
︸ ︷︷ ︸

Q into bubble

=
(
ρghfg

J
m3

)(
dV
dt

m3

s

)
︸ ︷︷ ︸

rate of energy increase
of the bubble

and then substitute eqn. (5.54) for q and 4πR3/3 for the volume, V .
This gives

k(Tsup − Tsat)√
απt

= ρghfg
dR
dt

(5.57)

Integrating eqn. (5.57) from R = 0 at t = 0 up to R at t, we obtain
Jakob’s prediction:

R = 2√
π

k∆T
ρghfg

√
α

√
t (5.58)

This analysis was done without assuming the curved bubble interface
to be plane, 24 years after Jakob’s work, by Plesset and Zwick [5.11]. It
was verified in a more exact way after another 5 years by Scriven [5.12].
These calculations are more complicated, but they lead to a very similar
result:

R = 2
√

3√
π

k∆T
ρghfg

√
α

√
t =

√
3RJakob. (5.59)

Both predictions are compared with some of the data of Dergarabe-
dian [5.13] in Fig. 5.18. The data and the exact theory match almost
perfectly. The simple theory of Jakob et al. shows the correct depen-
dence on R on all its variables, but it shows growth rates that are low
by a factor of

√
3. This is because the expansion of the spherical bub-

ble causes a relative motion of liquid toward the bubble surface, which
helps to thin the region of thermal influence in the radial direction. Con-
sequently, the temperature gradient and heat transfer rate are higher
than in Jakob’s model, which neglected the liquid motion. Therefore, the
temperature profile flattens out more slowly than Jakob predicts, and the
bubble grows more rapidly.

Experiment 5.2

Touch various objects in the room around you: glass, wood, cork-
board, paper, steel, and gold or diamond, if available. Rank them in
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Figure 5.18 The growth of a vapor bubble—predictions and
measurements.

order of which feels coldest at the first instant of contact (see Problem
5.29).

The more advanced theory of heat conduction (see, e.g., [5.6]) shows
that if two semi-infinite regions at uniform temperatures T1 and T2 are
placed together suddenly, their interface temperature, Ts , is given by6

Ts − T2

T1 − T2
=

√
(kρcp)2√

(kρcp)1 +
√
(kρcp)2

If we identify one region with your body (T1 � 37◦C) and the other with
the object being touched (T2 � 20◦C), we can determine the temperature,
Ts , that the surface of your finger will reach upon contact. Compare
the ranking you obtain experimentally with the ranking given by this
equation.

6For semi-infinite regions, initially at uniform temperatures, Ts does not vary with
time. For finite bodies, Ts will eventually change. A constant value of Ts means that
each of the two bodies independently behaves as a semi-infinite body whose surface
temperature has been changed to Ts at time zero. Consequently, our previous results—
eqns. (5.50), (5.51), and (5.54)—apply to each of these bodies while they may be treated
as semi-infinite. We need only replace T∞ by Ts in those equations.
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Notice that your bloodstream and capillary system provide a heat
source in your finger, so the equation is valid only for a moment. Then
you start replacing heat lost to the objects. If you included a diamond
among the objects that you touched, you will notice that it warmed up
almost instantly. Most diamonds are quite small but are possessed of the
highest known value of α. Therefore, they can behave as a semi-infinite
region only for an instant, and they usually feel warm to the touch.

Conduction to a semi-infinite region with a harmonically
oscillating temperature at the boundary

Suppose that we approximate the annual variation of the ambient tem-
perature as sinusoidal and then ask what the influence of this variation
will be beneath the ground. We want to calculate T − T (where T is the
average surface temperature) as a function of: depth, x; thermal diffu-
sivity, α; frequency of oscillation, ω; amplitude of oscillation, ∆T ; and
time, t. There are six variables in ◦C, m, and s, so the problem can be
represented in three dimensionless variables:

Θ ≡ T − T
∆T

; Ω ≡ωt; ξ ≡ x
√
ω
2α

.

We pose the problem as follows in these variables. The heat conduc-
tion equation is

1
2
∂2Θ
∂ξ2

= ∂Θ
∂Ω

(5.60)

and the b.c.’s are

Θ
∣∣∣
ξ=0

= cosωt and Θ
∣∣∣
ξ>0

= finite (5.61)

No i.c. is needed because, after the initial transient decays, the remaining
steady oscillation must be periodic.

The solution is given by Carslaw and Jaeger (see [5.6, §2.6] or work
Problem 5.16). It is

Θ (ξ,Ω) = e−ξ cos (Ω − ξ) (5.62)

This result is plotted in Fig. 5.19. It shows that the surface temperature
variation decays exponentially into the region and suffers a phase shift
as it does so.
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Figure 5.19 The temperature variation within a semi-infinite
region whose temperature varies harmonically at the boundary.

Example 5.7

How deep in the earth must we dig to find the temperature wave that
was launched by the coldest part of the last winter if it is now high
summer?

Solution. ω = 2π rad/yr, and Ω = ωt = 0 at the present. First,
we must find the depths at which the Ω = 0 curve reaches its lo-
cal extrema. (We pick the Ω = 0 curve because it gives the highest
temperature at t = 0.)

dΘ
dξ

∣∣∣∣∣
Ω=0

= −e−ξ cos(0− ξ)+ e−ξ sin(0− ξ) = 0

This gives

tan(0− ξ) = 1 so ξ = 3π
4
,

7π
4
, . . .

and the first minimum occurs where ξ = 3π/4 = 2.356, as we can see
in Fig. 5.19. Thus,

ξ = x
√
ω/2α = 2.356
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or, if we takeα = 0.139×10−6 m2/s (given in [5.14] for coarse, gravelly
earth),

x = 2.356

/√
2π

2
(
0.139× 10−6

) 1
365(24)(3600)

= 2.783 m

If we dug in the earth, we would find it growing older and colder until
it reached a maximum coldness at a depth of about 2.8 m. Farther
down, it would begin to warm up again, but not much. In midwinter
(Ω = π), the reverse would be true.

5.7 Steady multidimensional heat conduction

Introduction

The general equation for T(�r) during steady conduction in a region of
constant thermal conductivity, without heat sources, is called Laplace’s
equation:

∇2T = 0 (5.63)

It looks easier to solve than it is, since [recall eqn. (2.12) and eqn. (2.14)]
the Laplacian, ∇2T , is a sum of several second partial derivatives. We
solved one two-dimensional heat conduction problem in Example 4.1,
but this was not difficult because the boundary conditions were made to
order. Depending upon your mathematical background and the specific
problem, the analytical solution of multidimensional problems can be
anything from straightforward calculation to a considerable challenge.
The reader who wishes to study such analyses in depth should refer to
[5.6] or [5.15], where such calculations are discussed in detail.

Faced with a steady multidimensional problem, three routes are open
to us:

• Find out whether or not the analytical solution is already available
in a heat conduction text or in other published literature.

• Solve the problem.

(a) Analytically.

(b) Numerically.

• Obtain the solution graphically if the problem is two-dimensional.

It is to the last of these options that we give our attention next.
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Figure 5.20 The two-dimensional flow
of heat between two isothermal walls.

The flux plot

The method of flux plotting will solve all steady planar problems in which
all boundaries are held at either of two temperatures or are insulated.
With a little skill, it will provide accuracies of a few percent. This accuracy
is almost always greater than the accuracy with which the b.c.’s and k
can be specified; and it displays the physical sense of the problem very
clearly.

Figure 5.20 shows heat flowing from one isothermal wall to another
in a regime that does not conform to any convenient coordinate scheme.
We identify a series of channels, each which carries the same heat flow,
δQ W/m. We also include a set of equally spaced isotherms, δT apart,
between the walls. Since the heat fluxes in all channels are the same,∣∣∣δQ∣∣∣ = k

δT
δn

δs (5.64)

Notice that if we arrange things so that δQ, δT , and k are the same
for flow through each rectangle in the flow field, then δs/δn must be the
same for each rectangle. We therefore arbitrarily set the ratio equal to
unity, so all the elements appear as distorted squares.

The objective then is to sketch the isothermal lines and the adiabatic,7

7These are lines in the direction of heat flow. It immediately follows that there can
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or heat flow, lines which run perpendicular to them. This sketch is to be
done subject to two constraints

• Isothermal and adiabatic lines must intersect at right angles.

• They must subdivide the flow field into elements that are nearly
square—“nearly” because they have slightly curved sides.

Once the grid has been sketched, the temperature anywhere in the field
can be read directly from the sketch. And the heat flow per unit depth
into the paper is

Q W/m = NkδT
δs
δn

= N
I
k∆T (5.65)

where N is the number of heat flow channels and I is the number of
temperature increments, ∆T/δT .

The first step in constructing a flux plot is to draw the boundaries of
the region accurately in ink, using either drafting software or a straight-
edge. The next is to obtain a soft pencil (such as a no. 2 grade) and a
soft eraser. We begin with an example that was executed nicely in the
influential Heat Transfer Notes [5.3] of the mid-twentieth century. This
example is shown in Fig. 5.21.

The particular example happens to have an axis of symmetry in it. We
immediately interpret this as an adiabatic boundary because heat cannot
cross it. The problem therefore reduces to the simpler one of sketching
lines in only one half of the area. We illustrate this process in four steps.
Notice the following steps and features in this plot:

• Begin by dividing the region, by sketching in either a single isother-
mal or adiabatic line.

• Fill in the lines perpendicular to the original line so as to make
squares. Allow the original line to move in such a way as to accom-
modate squares. This will always require some erasing. Therefore:

• Never make the original lines dark and firm.

• By successive subdividing of the squares, make the final grid. Do
notmake the grid very fine. If you do, you will lose accuracy because
the lack of perpendicularity and squareness will be less evident to
the eye. Step IV in Fig. 5.21 is as fine a grid as should ever be made.

be no component of heat flow normal to them; they must be adiabatic.



Figure 5.21 The evolution of a flux plot.
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• If you have doubts about whether any large, ill-shaped regions are
correct, fill them in with an extra isotherm and adiabatic line to
be sure that they resolve into appropriate squares (see the dashed
lines in Fig. 5.21).

• Fill in the final grid, when you are sure of it, either in hard pencil or
pen, and erase any lingering background sketch lines.

• Your flow channels need not come out even. Notice that there is an
extra 1/7 of a channel in Fig. 5.21. This is simply counted as 1/7 of
a square in eqn. (5.65).

• Never allow isotherms or adiabatic lines to intersect themselves.

When the sketch is complete, we can return to eqn. (5.65) to compute
the heat flux. In this case

Q = N
I
k∆T = 2(6.14)

4
k∆T = 3.07k∆T

When the authors of [5.3] did this problem, they obtained N/I = 3.00—a
value only 2% below ours. This kind of agreement is typical when flux
plotting is done with care.

Figure 5.22 A flux plot with no axis of symmetry to guide con-
struction.
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One must be careful not to grasp at a false axis of symmetry. Figure
5.22 shows a shape similar to the one that we just treated, but with un-
equal legs. In this case, no lines must enter (or leave) the corners A and
B. The reason is that since there is no symmetry, we have no guidance
as to the direction of the lines at these corners. In particular, we know
that a line leaving A will no longer arrive at B.

Example 5.8

A structure consists of metal walls, 8 cm apart, with insulating ma-
terial (k = 0.12 W/m·K) between. Ribs 4 cm long protrude from one
wall every 14 cm. They can be assumed to stay at the temperature of
that wall. Find the heat flux through the wall if the first wall is at 40◦C
and the one with ribs is at 0◦C. Find the temperature in the middle of
the wall, 2 cm from a rib, as well.

Figure 5.23 Heat transfer through a wall with isothermal ribs.



§5.7 Steady multidimensional heat conduction 229

Solution. The flux plot for this configuration is shown in Fig. 5.23.
For a typical section, there are approximately 5.6 isothermal incre-
ments and 6.15 heat flow channels, so

Q = N
I
k∆T = 2(6.15)

5.6
(0.12)(40− 0) = 10.54 W/m

where the factor of 2 accounts for the fact that there are two halves
in the section. We deduce the temperature for the point of interest,
A, by a simple proportionality:

Tpoint A = 2.1
5.6

(40− 0) = 15◦C

The shape factor

A heat conduction shape factor S may be defined for steady problems
involving two isothermal surfaces as follows:

Q ≡ S k∆T . (5.66)

Thus far, every steady heat conduction problem we have done has taken
this form. For these situations, the heat flow always equals a function of
the geometric shape of the body multiplied by k∆T .

The shape factor can be obtained analytically, numerically, or through
flux plotting. For example, let us compare eqn. (5.65) and eqn. (5.66):

Q
W
m
= (S dimensionless)

(
k∆T

W
m

)
= N

I
k∆T (5.67)

This shows S to be dimensionless in a two-dimensional problem, but in
three dimensions S has units of meters:

Q W = (S m)
(
k∆T

W
m

)
. (5.68)

It also follows that the thermal resistance of a two-dimensional body is

Rt = 1
kS

where Q = ∆T
Rt

(5.69)

For a three-dimensional body, eqn. (5.69) is unchanged except that the
dimensions of Q and Rt differ.8

8Recall that we noted after eqn. (2.22) that the dimensions of Rt changed, depending
on whether or not Q was expressed in a unit-length basis.



230 Transient and multidimensional heat conduction §5.7

Figure 5.24 The shape factor for two similar bodies of different size.

The virtue of the shape factor is that it summarizes a heat conduction
solution in a given configuration. Once S is known, it can be used again
and again. That S is nondimensional in two-dimensional configurations
means that Q is independent of the size of the body. Thus, in Fig. 5.21, S
is always 3.07—regardless of the size of the figure—and in Example 5.8, S
is 2(6.15)/5.6 = 2.196, whether or not the wall is made larger or smaller.
When a body’s breadth is increased so as to increase Q, its thickness in
the direction of heat flow is also increased so as to decrease Q by the
same factor.

Example 5.9

Calculate the shape factor for a one-quarter section of a thick cylinder.

Solution. We already know Rt for a thick cylinder. It is given by
eqn. (2.22). From it we compute

Scyl = 1
kRt

= 2π
ln(ro/ri)

so on the case of a quarter-cylinder,

S = π
2 ln(ro/ri)

The quarter-cylinder is pictured in Fig. 5.24 for a radius ratio, ro/ri =
3, but for two different sizes. In both cases S = 1.43. (Note that the
same S is also given by the flux plot shown.)
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Figure 5.25 Heat transfer through a
thick, hollow sphere.

Example 5.10

Calculate S for a thick hollow sphere, as shown in Fig. 5.25.

Solution. The general solution of the heat diffusion equation in
spherical coordinates for purely radial heat flow is:

T = C1

r
+ C2

when T = fn(r only). The b.c.’s are

T(r = ri) = Ti and T(r = ro) = To

substituting the general solution in the b.c.’s we get

C1

ri
+ C2 = Ti and

C1

ro
+ C1 = To

Therefore,

C1 = Ti − To
ro − ri

riro and C2 = Ti − Ti − To
ro − ri

ro

Putting C1 and C2 in the general solution, and calling Ti − To ≡ ∆T ,
we get

T = Ti +∆T
[

riro
r(ro − ri)

− ro
ro − ri

]

Then

Q = −kA dT
dr

= 4π(riro)
ro − ri

k∆T

S = 4π(riro)
ro − ri

m

where S now has the dimensions of m.
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Table 5.4 includes a number of analytically derived shape factors for
use in calculating the heat flux in different configurations. Notice that
these results will not give local temperatures. To obtain that information,
one must solve the Laplace equation, ∇2T = 0, by one of the methods
listed at the beginning of this section. Notice, too, that this table is re-
stricted to bodies with isothermal and insulated boundaries.

In the two-dimensional cases, both a hot and a cold surface must be
present in order to have a steady-state solution; if only a single hot (or
cold) body is present, steady state is never reached. For example, a hot
isothermal cylinder in a cooler, infinite medium never reaches steady
state with that medium. Likewise, in situations 5, 6, and 7 in the table,
the medium far from the isothermal plane must also be at temperature
T2 in order for steady state to occur; otherwise the isothermal plane and
the medium below it would behave as an unsteady, semi-infinite body. Of
course, since no real medium is truly infinite, what this means in practice
is that steady state only occurs after the medium “at infinity” comes to
a temperature T2. Conversely, in three-dimensional situations (such as
4, 8, 12, and 13), a body can come to steady state with a surrounding
infinite or semi-infinite medium at a different temperature.

Example 5.11

A spherical heat source of 6 cm in diameter is buried 30 cm below the
surface of a very large box of soil and kept at 35◦C. The surface of
the soil is kept at 21◦C. If the steady heat transfer rate is 14 W, what
is the thermal conductivity of this sample of soil?

Solution.

Q = S k∆T =
(

4πR
1− R/2h

)
k∆T

where S is that for situation 7 in Table 5.4. Then

k = 14 W
(35− 21)K

1− (0.06/2)
/
2(0.3)

4π(0.06/2) m
= 2.545 W/m·K

Readers who desire a broader catalogue of shape factors should refer
to [5.16], [5.18], or [5.19].



Table 5.4 Conduction shape factors: Q = S k∆T .

Situation Shape factor, S Dimensions Source

1. Conduction through a slab A/L meter Example 2.2

2. Conduction through wall of a
long thick cylinder

2π
ln (ro/ri)

none Example 5.9

3. Conduction through a
thick-walled hollow sphere

4π (rori)
ro − ri

meter Example 5.10

4. The boundary of a spherical hole
of radius R conducting into an
infinite medium

4πR meter Problems 5.19
and 2.15

5. Cylinder of radius R and length L,
transferring heat to a parallel
isothermal plane; h L

2πL
cosh−1 (h/R)

meter [5.16]

6. Same as item 5, but with L �→∞
(two-dimensional conduction)

2π
cosh−1 (h/R)

none [5.16]

7. An isothermal sphere of radius R
transfers heat to an isothermal
plane; R/h < 0.8 (see item 4)

4πR
1− R/2h

meter [5.16, 5.17]
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Table 5.4 Conduction shape factors: Q = S k∆T (con’t).

Situation Shape factor, S Dimensions Source

8. An isothermal sphere of radius R,
near an insulated plane, transfers
heat to a semi-infinite medium at
T∞ (see items 4 and 7) 4πR

1+ R/2h
meter [5.18]

9. Parallel cylinders exchange heat
in an infinite conducting medium

2π

cosh−1

(
L2 − R2

1 − R2
2

2R1R2

) none [5.6]

10. Same as 9, but with cylinders
widely spaced; L� R1 and R2

2π

cosh−1
(

L
2R1

)
+ cosh−1

(
L

2R2

) none [5.16]

11. Cylinder of radius Ri surrounded
by eccentric cylinder of radius
Ro > Ri; centerlines a distance L
apart (see item 2)

2π

cosh−1

(
R2
o + R2

i − L2

2RoRi

)
none [5.6]

12. Isothermal disc of radius R on an
otherwise insulated plane
conducts heat into a semi-infinite
medium at T∞ below it

4R meter [5.6]

13. Isothermal ellipsoid of semimajor
axis b and semiminor axes a
conducts heat into an infinite
medium at T∞; b > a (see 4)

4πb
√

1− a2
/
b2

tanh−1
(√

1− a2
/
b2

) meter [5.16]
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Figure 5.26 Resistance vanishes where
two isothermal boundaries intersect.

The problem of locally vanishing resistance

Suppose that two different temperatures are specified on adjacent sides
of a square, as shown in Fig. 5.26. The shape factor in this case is

S = N
I
= ∞

4
= ∞

(It is futile to try and count channels beyond N � 10, but it is clear that
they multiply without limit in the lower left corner.) The problem is that
we have violated our rule that isotherms cannot intersect and have cre-
ated a 1/r singularity. If we actually tried to sustain such a situation,
the figure would be correct at some distance from the corner. However,
where the isotherms are close to one another, they will necessarily influ-
ence and distort one another in such a way as to avoid intersecting. And
S will never really be infinite, as it appears to be in the figure.

5.8 Transient multidimensional heat conduction—
The tactic of superposition

Consider the cooling of a stubby cylinder, such as the one shown in
Fig. 5.27a. The cylinder is initially at T = Ti, and it is suddenly sub-
jected to a common b.c. on all sides. It has a length 2L and a radius ro.
Finding the temperature field in this situation is inherently complicated.
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It requires solving the heat conduction equation for T = fn(r , z, t) with
b.c.’s of the first, second, or third kind.

However, Fig. 5.27a suggests that this can somehow be viewed as a
combination of an infinite cylinder and an infinite slab. It turns out that
the problem can be analyzed from that point of view.

If the body is subject to uniform b.c.’s of the first, second, or third
kind, and if it has a uniform initial temperature, then its temperature
response is simply the product of an infinite slab solution and an infinite
cylinder solution each having the same boundary and initial conditions.
For the case shown in Fig. 5.27a, if the cylinder begins convective cool-
ing into a medium at temperature T∞ at time t = 0, the dimensional
temperature response is

T (r , z, t)− T∞ =
[
Tslab(z, t)− T∞

]
×

[
Tcyl(r , t)− T∞

]
(5.70a)

Observe that the slab has as a characteristic length L, its half thickness,
while the cylinder has as its characteristic length R, its radius. In dimen-
sionless form, we may write eqn. (5.70a) as

Θ ≡ T(r , z, t)− T∞
Ti − T∞

=
[
Θinf slab(ξ, Fos,Bis)

] [
Θinf cyl(ρ, Foc,Bic)

]
(5.70b)

For the cylindrical component of the solution,

ρ = r
ro
, Foc = αt

r2
o
, and Bic = hro

k
,

while for the slab component of the solution

ξ = z
L
+ 1, Fos = αt

L2
, and Bis = hL

k
.

The component solutions are none other than those discussed in Sec-
tions 5.3–5.5. The proof of the legitimacy of such product solutions is
given by Carlsaw and Jaeger [5.6, §1.15].

Figure 5.27b shows a point inside a one-eighth-infinite region, near the
corner. This case may be regarded as the product of three semi-infinite
bodies. To find the temperature at this point we write

Θ ≡ T(x1, x2, x3, t)− T∞
Ti − T∞

= [Θsemi(ζ1, β)] [Θsemi(ζ2, β)] [Θsemi(ζ3, β)]

(5.71)



Figure 5.27 Various solid bodies whose transient cooling can
be treated as the product of one-dimensional solutions.
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in whichΘsemi is either the semi-infinite body solution given by eqn. (5.53)
when convection is present at the boundary or the solution given by
eqn. (5.50) when the boundary temperature itself is changed at time zero.

Several other geometries can also be represented by product solu-
tions. Note that for of these solutions, the value of Θ at t = 0 is one for
each factor in the product.

Example 5.12

A very long 4 cm square iron rod at Ti = 100◦C is suddenly immersed
in a coolant at T∞ = 20◦C with h = 800 W/m2K. What is the temper-
ature on a line 1 cm from one side and 2 cm from the adjoining side,
after 10 s?

Solution. With reference to Fig. 5.27c, see that the bar may be
treated as the product of two slabs, each 4 cm thick. We first evaluate
Fo1 = Fo2 = αt/L2 = (0.0000226 m2/s)(10 s)

/
(0.04 m/2)2 = 0.565,

and Bi1 = Bi2 = hL
/
k = 800(0.04/2)/76 = 0.2105, and we then

write

Θ
[(

x
L

)
1
= 0,

(
x
L

)
2
= 1

2
, Fo1, Fo2,Bi−1

1 ,Bi−1
2

]

= Θ1

[(
x
L

)
1
= 0, Fo1 = 0.565, Bi−1

1 = 4.75
]

︸ ︷︷ ︸
= 0.93 from upper left-hand

side of Fig. 5.7

×Θ2

[(
x
L

)
2
= 1

2
, Fo2 = 0.565, Bi−1

2 = 4.75
]

︸ ︷︷ ︸
= 0.91 from interpolation

between lower lefthand side and
upper righthand side of Fig. 5.7

Thus, at the axial line of interest,

Θ = (0.93)(0.91) = 0.846

so

T − 20
100− 20

= 0.846 or T = 87.7◦C
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Product solutions can also be used to determine the mean tempera-
ture, Θ, and the total heat removal, Φ, from a multidimensional object.
For example, when two or three solutions (Θ1, Θ2, and perhaps Θ3) are
multiplied to obtain Θ, the corresponding mean temperature of the mul-
tidimensional object is simply the product of the one-dimensional mean
temperatures from eqn. (5.40)

Θ = Θ1 (Fo1,Bi1)×Θ2 (Fo2,Bi2) for two factors (5.72a)

Θ = Θ1 (Fo1,Bi1)×Θ2 (Fo2,Bi2)×Θ3 (Fo3,Bi3) for three factors.
(5.72b)

Since Φ = 1 − Θ, a simple calculation shows that Φ can found from Φ1,
Φ2, and Φ3 as follows:

Φ = Φ1 + Φ2 (1− Φ1) for two factors (5.73a)

Φ = Φ1 + Φ2 (1− Φ1)+ Φ3 (1− Φ2) (1− Φ1) for three factors. (5.73b)

Example 5.13

For the bar described in Example 5.12, what is the mean temperature
after 10 s and how much heat has been lost at that time?

Solution. For the Biot and Fourier numbers given in Example 5.12,
we find from Fig. 5.10a

Φ1 (Fo1 = 0.565,Bi1 = 0.2105) = 0.10

Φ2 (Fo2 = 0.565,Bi2 = 0.2105) = 0.10

and, with eqn. (5.73a),

Φ = Φ1 + Φ2 (1− Φ1) = 0.19

The mean temperature is

Θ = T − 20
100− 20

= 1− Φ = 0.81

so

T = 20+ 80(0.81) = 84.8◦C
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Problems

5.1 Rework Example 5.1, and replot the solution, with one change.
This time, insert the thermometer at zero time, at an initial
temperature < (Ti − bT ).

5.2 A body of known volume and surface area and temperature Ti
is suddenly immersed in a bath whose temperature is rising
as Tbath = Ti + (T0 − Ti)et/τ . Let us suppose that h is known,
that τ = 10ρcV/hA, and that t is measured from the time of
immersion. The Biot number of the body is small. Find the
temperature response of the body. Plot the response and the
bath temperature as a function of time up to t = 2τ . (Do not
use Laplace transform methods except, perhaps, as a check.)

5.3 A body of known volume and surface area is immersed in a bath
whose temperature is varying sinusoidally with a frequency ω
about an average value. The heat transfer coefficient is known
and the Biot number is small. Find the temperature variation
of the body after a long time has passed, and plot it along with
the bath temperature. Comment on any interesting aspects of
the solution.

A suggested program for solving this problem:

• Write the differential equation of response.

• To get the particular integral of the complete equation,
guess that T − Tmean = C1 cosωt + C2 sinωt. Substitute
this in the differential equation and find C1 and C2 values
that will make the resulting equation valid.

• Write the general solution of the complete equation. It will
have one unknown constant in it.

• Write any initial condition you wish—the simplest one you
can think of—and use it to get rid of the constant.

• Let the time be large and note which terms vanish from
the solution. Throw them away.

• Combine two trigonometric terms in the solution into a
term involving sin(ωt−β), where β = fn(ωT ) is the phase
lag of the body temperature.

5.4 A block of copper floats within a large region of well-stirred
mercury. The system is initially at a uniform temperature, Ti.
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There is a heat transfer coefficient, hm, on the inside of the thin
metal container of the mercury and another one, hc , between
the copper block and the mercury. The container is then sud-
denly subjected to a change in ambient temperature from Ti to
Ts < Ti. Predict the temperature response of the copper block,
neglecting the internal resistance of both the copper and the
mercury. Check your result by seeing that it fits both initial
conditions and that it gives the expected behavior at t →∞.

5.5 Sketch the electrical circuit that is analogous to the second-
order lumped capacity system treated in the context of Fig. 5.5
and explain it fully.

5.6 A one-inch diameter copper sphere with a thermocouple in its
center is mounted as shown in Fig. 5.28 and immersed in water
that is saturated at 211◦F. The figure shows the thermocou-
ple reading as a function of time during the quenching pro-
cess. If the Biot number is small, the center temperature can
be interpreted as the uniform temperature of the sphere dur-
ing the quench. First draw tangents to the curve, and graph-
ically differentiate it. Then use the resulting values of dT/dt
to construct a graph of the heat transfer coefficient as a func-
tion of (Tsphere − Tsat). The result will give actual values of
h during boiling over the range of temperature differences.
Check to see whether or not the largest value of the Biot num-
ber is too great to permit the use of lumped-capacity meth-
ods.

5.7 A butt-welded 36-gage thermocouple is placed in a gas flow
whose temperature rises at the rate 20◦C/s. The thermocou-
ple steadily records a temperature 2.4◦C below the known gas
flow temperature. If ρc is 3800 kJ/m3K for the thermocouple
material, what is h on the thermocouple? [h = 1006 W/m2K.]

5.8 Check the point on Fig. 5.7 at Fo = 0.2, Bi = 10, and x/L = 0
analytically.

5.9 Prove that when Bi is large, eqn. (5.34) reduces to eqn. (5.33).

5.10 Check the point at Bi = 0.1 and Fo = 2.5 on the slab curve in
Fig. 5.10 analytically.
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Figure 5.28 Configuration and temperature response for
Problem 5.6

5.11 Sketch one of the curves in Fig. 5.7, 5.8, or 5.9 and identify:

• The region in which b.c.’s of the third kind can be replaced
with b.c.’s of the first kind.

• The region in which a lumped-capacity response can be
assumed.

• The region in which the solid can be viewed as a semi-
infinite region.

5.12 Water flows over a flat slab of Nichrome, 0.05 mm thick, which
serves as a resistance heater using AC power. The apparent
value of h is 2000 W/m2K. How much surface temperature fluc-
tuation will there be?
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5.13 Put Jakob’s bubble growth formula in dimensionless form, iden-
tifying a “Jakob number”, Ja ≡ cp(Tsup − Tsat)/hfg as one of
the groups. (Ja is the ratio of sensible heat to latent heat.) Be
certain that your nondimensionalization is consistent with the
Buckingham pi-theorem.

5.14 A 7 cm long vertical glass tube is filled with water that is uni-
formly at a temperature of T = 102◦C. The top is suddenly
opened to the air at 1 atm pressure. Plot the decrease of the
height of water in the tube by evaporation as a function of time
until the bottom of the tube has cooled by 0.05◦C.

5.15 A slab is cooled convectively on both sides from a known ini-
tial temperature. Compare the variation of surface temperature
with time as given in Fig. 5.7 with that given by eqn. (5.53) if Bi
= 2. Discuss the meaning of your comparisons.

5.16 To obtain eqn. (5.62), assume a complex solution of the type
Θ = fn(ξ)exp(iΩ), where i ≡ √−1. This will assure that the real
part of your solution has the required periodicity and, when
you substitute it in eqn. (5.60), you will get an easy-to-solve
ordinary d.e. in fn(ξ).

5.17 A certain steel cylinder wall is subjected to a temperature os-
cillation that we approximate at T = 650◦C + (300◦C) cosωt,
where the piston fires eight times per second. For stress de-
sign purposes, plot the amplitude of the temperature variation
in the steel as a function of depth. If the cylinder is 1 cm thick,
can we view it as having infinite depth?

5.18 A 40 cm diameter pipe at 75◦C is buried in a large block of Port-
land cement. It runs parallel with a 15◦C isothermal surface at
a depth of 1 m. Plot the temperature distribution along the line
normal to the 15◦C surface that passes through the center of
the pipe. Compute the heat loss from the pipe both graphically
and analytically.

5.19 Derive shape factor 4 in Table 5.4.

5.20 Verify shape factor 9 in Table 5.4 with a flux plot. Use R1/R2 =
2 and R1/L = ½. (Be sure to start out with enough blank paper
surrounding the cylinders.)
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5.21 A copper block 1 in. thick and 3 in. square is held at 100◦F
on one 1 in. by 3 in. surface. The opposing 1 in. by 3 in. sur-
face is adiabatic for 2 in. and 90◦F for 1 inch. The remaining
surfaces are adiabatic. Find the rate of heat transfer. [Q =
36.8 W.]

5.22 Obtain the shape factor for any or all of the situations pic-
tured in Fig. 5.29a through j on pages 246–247. In each case,
present a well-drawn flux plot. [Sb � 1.03, Sc � Sd, Sg =
1.]

5.23 Two copper slabs, 3 cm thick and insulated on the outside, are
suddenly slapped tightly together. The one on the left side is
initially at 100◦C and the one on the right side at 0◦C. Deter-
mine the left-hand adiabatic boundary’s temperature after 2.3
s have elapsed. [Twall � 80.5◦C]

5.24 Estimate the time required to hard-cook an egg if:Eggs cook as their
proteins denature and
coagulate. The time to

cook depends on
whether a soft or hard
cooked egg desired.

Eggs may be cooked by
placing them (cold or
warm) into cold water

before heating starts or
by placing warm eggs
directly into simmering

water [5.20].

• The minor diameter is 3.8 cm.

• k for the egg is about the same as for water. No signif-
icant heat release or change of properties occurs during
cooking.

• h between the egg and the water is 140 W/m2K.

• The egg is put in boiling water when the egg is at a uniform
temperature of 25◦C.

• The egg is done when the center reaches 96◦C.

5.25 Prove that T1 in Fig. 5.5 cannot oscillate.

5.26 Show that when isothermal and adiabatic lines are interchanged
in a two-dimenisonal body, the new shape factor is the inverse
of the original one.

5.27 A 0.5 cm diameter cylinder at 300◦C is suddenly immersed in
saturated water at 1 atm. If h = 10,000 W/m2K, find the cen-
terline and surface temperatures after 0.2 s:

a. If the cylinder is copper.

b. If the cylinder is Nichrome V. [Tsfc � 200◦C.]

c. If the cylinder is Nichrome V, obtain the most accurate
value of the temperatures after 0.04 s that you can.
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5.28 A large, flat electrical resistance strip heater is fastened to a
firebrick wall, unformly at 15◦C. When it is suddenly turned on,
it releases heat at the uniform rate of 4000 W/m2. Plot the tem-
perature of the brick immediately under the heater as a func-
tion of time if the other side of the heater is insulated. What
is the heat flux at a depth of 1 cm when the surface reaches
200◦C.

5.29 Do Experiment 5.2 and submit a report on the results.

5.30 An approximately spherical container, 2 cm in diameter, con-
taining electronic equipment is placed in wet mineral soil with
its center 2 m below the surface. The soil surface is kept at 0◦C.
What is the maximum rate at which energy can be released by
the equipment if the surface of the sphere is not to exceed
30◦C?

5.31 A semi-infinite slab of ice at −10◦C is exposed to air at 15◦C
through a heat transfer coefficient of 10 W/m2K. What is the
initial rate of melting of ice in kg/m2s? What is the asymp-
totic rate of melting? Describe the melting process in phys-
ical terms. (The latent heat of fusion of ice, hsf = 333,300
J/kg.)

5.32 One side of a firebrick wall, 10 cm thick, initially at 20◦C is ex-
posed to 1000◦C flame through a heat transfer coefficient of
230 W/m2K. How long will it be before the other side is too hot
to touch? (Estimate properties at 500◦C, and assume that h is
quite low on the cool side.)

5.33 A particular lead bullet travels for 0.5 sec within a shock wave
that heats the air near the bullet to 300◦C. Approximate the
bullet as a cylinder 0.8 cm in diameter. What is its surface tem-
perature at impact if h = 600 W/m2K and if the bullet was
initially at 20◦C? What is its center temperature?

5.34 A loaf of bread is removed from the oven at 125◦C and set
on the (insulating) counter to cool. The loaf is 30 cm long,
15 cm high, and 12 cm wide. If k = 0.05 W/m·K and α =
5 × 10−7 m2/s for bread, and h = 10 W/m2K, when will the
hottest part of the loaf have cooled to 60◦C? [About 1 h 10
min.]



Figure 5.29 Configurations for Problem 5.22
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Figure 5.29 Configurations for Problem 5.22 (con’t)
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5.35 A lead cube, 50 cm on each side, is initially at 20◦C. The sur-
roundings are suddenly raised to 200◦C and h around the cube
is 272 W/m2K. Plot the cube temperature along a line from
the center to the middle of one face after 20 minutes have
elapsed.

5.36 A jet of clean water superheated to 150◦C issues from a 1/16
inch diameter sharp-edged orifice into air at 1 atm, moving at
27 m/s. The coefficient of contraction of the jet is 0.611. Evap-
oration at T = Tsat begins immediately on the outside of the jet.
Plot the centerline temperature of the jet and T(r/ro = 0.6) as
functions of distance from the orifice up to about 5 m. Neglect
any axial conduction and any dynamic interactions between the
jet and the air.

5.37 A 3 cm thick slab of aluminum (initially at 50◦C) is slapped
tightly against a 5 cm slab of copper (initially at 20◦C). The out-
sides are both insulated and the contact resistance is neglible.
What is the initial interfacial temperature? Estimate how long
the interface will keep its initial temperature.

5.38 A cylindrical underground gasoline tank, 2 m in diameter and
4 m long, is embedded in 10◦C soil with k = 0.8 W/m2K and
α = 1.3 × 10−6 m2/s. water at 27◦C is injected into the tank
to test it for leaks. It is well-stirred with a submerged ½ kW
pump. We observe the water level in a 10 cm I.D. transparent
standpipe and measure its rate of rise and fall. What rate of
change of height will occur after one hour if there is no leak-
age? Will the level rise or fall? Neglect thermal expansion and
deformation of the tank, which should be complete by the time
the tank is filled.

5.39 A 47◦C copper cylinder, 3 cm in diameter, is suddenly im-
mersed horizontally in water at 27◦C in a reduced gravity en-
vironment. Plot Tcyl as a function of time if g = 0.76 m/s2

and if h = [2.733+ 10.448(∆T ◦C)1/6 ]2 W/m2K. (Do it numer-
ically if you cannot integrate the resulting equation analyti-
cally.)

5.40 The mechanical engineers at the University of Utah end spring
semester by roasting a pig and having a picnic. The pig is
roughly cylindrical and about 26 cm in diameter. It is roasted
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over a propane flame, whose products have properties similar
to those of air, at 280◦C. The hot gas flows across the pig at
about 2 m/s. If the meat is cooked when it reaches 95◦C, and
if it is to be served at 2:00 pm, what time should cooking com-
mence? Assume Bi to be large, but note Problem 7.40. The pig
is initially at 25◦C.

5.41 People from cold northern climates know not to grasp metal
with their bare hands in subzero weather. A very slightly frosted
peice of, say, cast iron will stick to your hand like glue in, say,
−20◦C weather and might tear off patches of skin. Explain this
quantitatively.

5.42 A 4 cm diameter rod of type 304 stainless steel has a very
small hole down its center. The hole is clogged with wax that
has a melting point of 60◦C. The rod is at 20◦C. In an attempt
to free the hole, a workman swirls the end of the rod—and
about a meter of its length—in a tank of water at 80◦C. If h
is 688 W/m2K on both the end and the sides of the rod, plot
the depth of the melt front as a function of time up to say, 4
cm.

5.43 A cylindrical insulator contains a single, very thin electrical re-
sistor wire that runs along a line halfway between the center
and the outside. The wire liberates 480 W/m. The thermal con-
ductivity of the insulation is 3 W/m2K, and the outside perime-
ter is held at 20◦C. Develop a flux plot for the cross section,
considering carefully how the field should look in the neigh-
borhood of the point through which the wire passes. Evaluate
the temperature at the center of the insulation.

5.44 A long, 10 cm square copper bar is bounded by 260◦C gas flows
on two opposing sides. These flows impose heat transfer coef-
ficients of 46 W/m2K. The two intervening sides are cooled by
natural convection to water at 15◦C, with a heat transfer coef-
ficient of 30 W/m2K. What is the heat flow through the block
and the temperature at the center of the block? (This could
be a pretty complicated problem, but take the trouble to think
about Biot numbers before you begin.)

5.45 Lord Kelvin made an interesting estimate of the age of the earth
in 1864. He assumed that the earth originated as a mass of
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molten rock at 4144 K (7000◦F) and that it had been cooled by
outer space at 0 K ever since. To do this, he assumed that Bi
for the earth is very large and that cooling had thus far pen-
etrated through only a relatively thin (one-dimensional) layer.
Using αrock = 1.18×10−6 m/s2 and the measured surface tem-
perature gradient of the earth, 1

27
◦C/m, Find Kelvin’s value of

Earth’s age. (Kelvin’s result turns out to be much less than the
accepted value of 4 billion years. His calculation fails because
internal heat generation by radioactive decay of the material in
the surface layer causes the surface temperature gradient to be
higher than it would otherwise be.)

5.46 A pure aluminum cylinder, 4 cm diam. by 8 cm long, is ini-
tially at 300◦C. It is plunged into a liquid bath at 40◦C with
h = 500 W/m2K. Calculate the hottest and coldest tempera-
tures in the cylinder after one minute. Compare these results
with the lumped capacity calculation, and discuss the compar-
ison.
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6. Laminar and turbulent boundary
layers

In cold weather, if the air is calm, we are not so much chilled as when there
is wind along with the cold; for in calm weather, our clothes and the air
entangled in them receive heat from our bodies; this heat. . .brings them
nearer than the surrounding air to the temperature of our skin. But in
windy weather, this heat is prevented. . .from accumulating; the cold air,
by its impulse. . .both cools our clothes faster and carries away the warm
air that was entangled in them.

notes on “The General Effects of Heat”, Joseph Black, c. 1790s

6.1 Some introductory ideas

Joseph Black’s perception about forced convection (above) represents a
very correct understanding of the way forced convective cooling works.
When cold air moves past a warm body, it constantly sweeps away warm
air that has become, as Black put it, “entangled” with the body and re-
places it with cold air. In this chapter we learn to form analytical descrip-
tions of these convective heating (or cooling) processes.

Our aim is to predict h and h, and it is clear that such predictions
must begin in the motion of fluid around the bodies that they heat or
cool. It is by predicting such motion that we will be able to find out how
much heat is removed during the replacement of hot fluid with cold, and
vice versa.

Flow boundary layer

Fluids flowing past solid bodies adhere to them, so a region of variable
velocity must be built up between the body and the free fluid stream, as

255
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Figure 6.1 A boundary layer of thickness δ.

indicated in Fig. 6.1. This region is called a boundary layer, which we will
often abbreviate as b.l. The b.l. has a thickness, δ. The boundary layer
thickness is arbitrarily defined as the distance from the wall at which
the flow velocity approaches to within 1% of u∞. The boundary layer
is normally very thin in comparison with the dimensions of the body
immersed in the flow.1

The first step that has to be taken before h can be predicted is the
mathematical description of the boundary layer. This description was
first made by Prandtl2 (see Fig. 6.2) and his students, starting in 1904,
and it depended upon simplifications that followed after he recognized
how thin the layer must be.

The dimensional functional equation for the boundary layer thickness
on a flat surface is

δ = fn(u∞, ρ, µ,x)

where x is the length along the surface and ρ and µ are the fluid density
in kg/m3 and the dynamic viscosity in kg/m·s. We have five variables in

1We qualify this remark when we treat the b.l. quantitatively.
2Prandtl was educated at the Technical University in Munich and finished his doctor-

ate there in 1900. He was given a chair in a new fluid mechanics institute at Göttingen
University in 1904—the same year that he presented his historic paper explaining the
boundary layer. His work at Göttingen, during the period up to Hitler’s regime, set the
course of modern fluid mechanics and aerodynamics and laid the foundations for the
analysis of heat convection.
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Figure 6.2 Ludwig Prandtl (1875–1953).
(Photograph courtesy of Appl. Mech.
Revs., vol. 26, Feb. 1973.)

kg, m, and s, so we anticipate two pi-groups:

δ
x
= fn(Rex) Rex ≡ ρu∞x

µ
= u∞x

ν
(6.1)

where ν is the kinematic viscosity µ/ρ and Rex is called the Reynolds
number. It characterizes the relative influences of inertial and viscous
forces in a fluid problem. The subscript on Re—x in this case—tells
what length it is based upon.

We discover shortly that the actual form of eqn. (6.1) for a flat surface,
where u∞ remains constant, is

δ
x
= 4.92√

Rex
(6.2)

which means that if the velocity is great or the viscosity is low, δ/x will
be relatively small. Heat transfer will be relatively high in such cases. If
the velocity is low, the b.l. will be relatively thick. A good deal of nearly
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Osborne Reynolds (1842 to 1912)
Reynolds was born in Ireland but he
taught at the University of Manchester.
He was a significant contributor to the
subject of fluid mechanics in the late
19th C. His original laminar-to-
turbulent flow transition experiment,
pictured below, was still being used as
a student experiment at the University
of Manchester in the 1970s.

Figure 6.3 Osborne Reynolds and his laminar–turbulent flow
transition experiment. (Photograph courtesy of Appl. Mech.
Revs., vol. 26, Feb. 1973.)

stagnant fluid will accumulate near the surface and be “entangled” with
the body, although in a different way than Black envisioned it to be.

The Reynolds number is named after Osborne Reynolds (see Fig. 6.3),
who discovered the laminar–turbulent transition during fluid flow in a
tube. He injected ink into a steady and undisturbed flow of water and
found that, beyond a certain average velocity, uav, the liquid streamline
marked with ink would become wobbly and then break up into increas-
ingly disorderly eddies, and it would finally be completely mixed into the
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Figure 6.4 Boundary layer on a long, flat surface with a sharp
leading edge.

water, as is suggested in the sketch.
To define the transition, we first note that (uav)crit, the transitional

value of the average velocity, must depend on the pipe diameter, D, on
µ, and on ρ—four variables in kg, m, and s. There is therefore only one
pi-group:

Recritical ≡ ρD(uav)crit

µ
(6.3)

The maximum Reynolds number for which fully developed laminar flow
in a pipe will always be stable, regardless of the level of background noise,
is 2100. In a reasonably careful experiment, laminar flow can be made
to persist up to Re = 10,000. With enormous care it can be increased
still another order of magnitude. But the value below which the flow will
always be laminar—the critical value of Re—is 2100.

Much the same sort of thing happens in a boundary layer. Figure 6.4
shows fluid flowing over a plate with a sharp leading edge. The flow is
laminar up to a transitional Reynolds number based on x:

Rexcritical =
u∞xcrit

ν
(6.4)

At larger values of x the b.l. exhibits sporadic vortexlike instabilities over
a fairly long range, and it finally settles into a fully turbulent b.l.
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For the boundary layer shown, Rexcritical = 3.5 × 105, but the actual
onset of turbulent behavior depends strongly on the amount of turbu-
lence in the flow over the plate, the precise shape of the leading edge,
the roughness of the wall, and the presence of acoustic or structural vi-
brations [6.1, §5.5]. On a flat plate, a boundary layer remains laminar
even for very large disturbances when Rex ≤ 6 × 104. With relatively
undisturbed conditions, transition occurs for Rex in the range of 3×105

to 5 × 105, and in very careful laboratory experiments, turbulent tran-
sition can be delayed until Rex ≈ 3 × 106 or so. Turbulent transition
is essentially always complete before Rex = 4 × 106 and usually much
earlier.

These specifications of the critical Re are restricted to flat surfaces. If
the surface is curved into the flow, as shown in Fig. 6.1, turbulence might
be triggered at greatly lowered values of Rex .

Thermal boundary layer

If the wall is at a temperature Tw , different from that of the free stream,
T∞, there is a thermal boundary layer thickness, δt—different from the
flow b.l. thickness, δ. A thermal b.l. is pictured in Fig. 6.5. Now, with ref-
erence to this picture, we equate the heat conducted away from the wall
by the fluid to the same heat transfer expressed in terms of a convective
heat transfer coefficient:

−kf ∂T
∂y

∣∣∣∣∣
y=0︸ ︷︷ ︸

conduction
into the fluid

= h(Tw − T∞) (6.5)

where kf is the conductivity of the fluid. Notice two things about this
result. In the first place, it is correct to express heat removal at the wall
using Fourier’s law of conduction, because there is no fluid motion in the
direction of q. The other point is that while eqn. (6.5) looks like a b.c. of
the third kind, it is not. This condition defines h within the fluid instead
of specifying it as known information on the boundary. Equation (6.5)
can be arranged in the form

∂
(
Tw − T
Tw − T∞

)
∂(y/L)

∣∣∣∣∣∣∣∣∣
y/L=0

= hL
kf

= NuL, the Nusselt number (6.5a)
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Figure 6.5 The thermal boundary layer
during the flow of cool fluid over a warm
plate.

where L is a characteristic dimension of the body under consideration—
the length of a plate, the diameter of a cylinder, or [if we write eqn. (6.5)
at a point of interest along a flat surface] Nux ≡ hx/kf . From Fig. 6.5 we
see immediately that the physical significance of Nu is given by

NuL = L
δ′t

(6.6)

In other words, the Nusselt number is inversely proportional to the thick-
ness of the thermal b.l.

The Nusselt number is named after Wilhelm Nusselt,3 whose work on
convective heat transfer was as basic as Prandtl’s was in analyzing the
related fluid dynamics (see Fig. 6.6).

We now turn to the detailed evaluation of h. And, as the preceding
remarks make very clear, this evaluation will have to start with a devel-
opment of the flow field in the boundary layer.

3Nusselt finished his doctorate in mechanical engineering at the Technical Univer-
sity in Munich in 1907. During an indefinite teaching appointment at Dresden (1913 to
1917) he made two of his most important contributions: He did the dimensional anal-
ysis of heat convection before he had access to Buckingham and Rayleigh’s work. In so
doing, he showed how to generalize limited data, and he set the pattern of subsequent
analysis. He also showed how to predict convective heat transfer during film conden-
sation. After moving about Germany and Switzerland from 1907 until 1925, he was
named to the important Chair of Theoretical Mechanics at Munich. During his early
years in this post, he made basic contributions to heat exchanger design methodology.
He held this position until 1952, during which time his, and Germany’s, great influence
in heat transfer and fluid mechanics waned. He was succeeded in the chair by another
of Germany’s heat transfer luminaries, Ernst Schmidt.
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Figure 6.6 Ernst Kraft Wilhelm Nusselt
(1882–1957). This photograph, provided
by his student, G. Lück, shows Nusselt at
the Kesselberg waterfall in 1912. He was
an avid mountain climber.

6.2 Laminar incompressible boundary layer on a flat
surface

We predict the boundary layer flow field by solving the equations that
express conservation of mass and momentum in the b.l. Thus, the first
order of business is to develop these equations.

Conservation of mass—The continuity equation

A two- or three-dimensional velocity field can be expressed in vectorial
form:

�u = �iu+ �jv + �kw

where u, v , and w are the x, y , and z components of velocity. Figure 6.7
shows a two-dimensional velocity flow field. If the flow is steady, the
paths of individual particles appear as steady streamlines. The stream-
lines can be expressed in terms of a stream function, ψ(x,y) = con-
stant, where each value of the constant identifies a separate streamline,
as shown in the figure.

The velocity, �u, is directed along the streamlines so that no flow can
cross them. Any pair of adjacent streamlines thus resembles a heat flow
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Figure 6.7 A steady, incompressible, two-dimensional flow
field represented by streamlines, or lines of constant ψ.

channel in a flux plot (Section 5.7); such channels are adiabatic—no heat
flow can cross them. Therefore, we write the equation for the conserva-
tion of mass by summing the inflow and outflow of mass on two faces of
a triangular element of unit depth, as shown in Fig. 6.7:

ρv dx − ρudy = 0 (6.7)

If the fluid is incompressible, so that ρ = constant along each streamline,
then

−v dx +udy = 0 (6.8)

But we can also differentiate the stream function along any streamline,
ψ(x,y) = constant, in Fig. 6.7:

dψ = ∂ψ
∂x

∣∣∣∣
y
dx + ∂ψ

∂y

∣∣∣∣∣
x
dy = 0 (6.9)

If we compare eqns. (6.8) and (6.9), we immediately see that the coef-
ficients of dx and dy must be the same, so

v = − ∂ψ
∂x

∣∣∣∣
y

and u = ∂ψ
∂y

∣∣∣∣∣
x

(6.10)
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Furthermore,

∂2ψ
∂y∂x

= ∂2ψ
∂x∂y

so it follows that

∂u
∂x

+ ∂v
∂y

= 0 (6.11)

This is called the two-dimensional continuity equation for incompress-
ible flow, because it expresses mathematically the fact that the flow is
continuous; it has no breaks in it. In three dimensions, the continuity
equation for an incompressible fluid is

∇ · �u = ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0

Example 6.1

Fluid moves with a uniform velocity, u∞, in the x-direction. Find the
stream function and see if it gives plausible behavior (see Fig. 6.8).

Solution. u = u∞ and v = 0. Therefore, from eqns. (6.10)

u∞ = ∂ψ
∂y

∣∣∣∣∣
x

and 0 = ∂ψ
∂x

∣∣∣∣
y

Integrating these equations, we get

ψ = u∞y + fn(x) and ψ = 0+ fn(y)

Comparing these equations, we get fn(x) = constant and fn(y) =
u∞y+ constant, so

ψ = u∞y + constant

This gives a series of equally spaced, horizontal streamlines, as we would
expect (see Fig. 6.8). We set the arbitrary constant equal to zero in the
figure.
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Figure 6.8 Streamlines in a uniform
horizontal flow field, ψ = u∞y .

Conservation of momentum

The momentum equation in a viscous flow is a complicated vectorial ex-
pression called the Navier-Stokes equation. Its derivation is carried out
in any advanced fluid mechanics text (see, e.g., [6.2, Chap. III]). We shall
offer a very restrictive derivation of the equation—one that applies only
to a two-dimensional incompressible b.l. flow, as shown in Fig. 6.9.

Here we see that shear stresses act upon any element such as to con-
tinuously distort and rotate it. In the lower part of the figure, one such
element is enlarged, so we can see the horizontal shear stresses4 and
the pressure forces that act upon it. They are shown as heavy arrows.
We also display, as lighter arrows, the momentum fluxes entering and
leaving the element.

Notice that both x- and y-directed momentum enters and leaves the
element. To understand this, one can envision a boxcar moving down
the railroad track with a man standing, facing its open door. A child
standing at a crossing throws him a baseball as the car passes. When
he catches the ball, its momentum will push him back, but a component
of momentum will also jar him toward the rear of the train, because
of the relative motion. Particles of fluid entering element A will likewise
influence its motion, with their x components of momentum carried into
the element by both components of flow.

The velocities must adjust themselves to satisfy the principle of con-
servation of linear momentum. Thus, we require that the sum of the
external forces in the x-direction, which act on the control volume, A,
must be balanced by the rate at which the control volume, A, forces x-

4The stress, τ , is often given two subscripts. The first one identifies the direction
normal to the plane on which it acts, and the second one identifies the line along which
it acts. Thus, if both subscripts are the same, the stress must act normal to a surface—it
must be a pressure or tension instead of a shear stress.
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Figure 6.9 Forces acting in a two-dimensional incompressible
boundary layer.

directed momentum out. The external forces, shown in Fig. 6.9, are(
τyx + ∂τyx

∂y
dy

)
dx − τyx dx + pdy −

(
p + ∂p

∂x
dx

)
dy

=
(
∂τyx
∂y

− ∂p
∂x

)
dx dy

The rate at which A loses x-directed momentum to its surroundings is(
ρu2 + ∂ρu2

∂x
dx

)
dy − ρu2 dy +

[
u(ρv)+ ∂ρuv

∂y
dy

]
dx

− ρuv dx =
(
∂ρu2

∂x
+ ∂ρuv

∂y

)
dx dy
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We equate these results and obtain the basic statement of conserva-
tion of x-directed momentum for the b.l.:

∂τyx
∂y

dy dx − dp
dx

dx dy =
(
∂ρu2

∂x
+ ∂ρuv

∂y

)
dx dy

The shear stress in this result can be eliminated with the help of Newton’s
law of viscous shear:

τyx = µ
∂u
∂y

so the momentum equation becomes

∂
∂y

(
µ
∂u
∂y

)
− dp
dx

=
(
∂ρu2

∂x
+ ∂ρuv

∂y

)

Finally, we remember that the analysis is limited to ρ � constant, and
we limit use of the equation to temperature ranges in which µ � constant.
Then

∂u2

∂x
+ ∂uv

∂y
= −1

ρ
dp
dx

+ ν
∂2u
∂y2

(6.12)

This is one form of the steady, two-dimensional, incompressible bound-
ary layer momentum equation. Although we have taken ρ � constant, a
more complete derivation reveals that the result is valid for compress-
ible flow as well. If we multiply eqn. (6.11) by u and subtract the result
from the left-hand side of eqn. (6.12), we obtain a second form of the
momentum equation:

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ
dp
dx

+ ν
∂2u
∂y2

(6.13)

Equation (6.13) has a number of so-called boundary layer approxima-
tions built into it:

• |∂u/∂x| is generally  ∣∣∂u/∂y∣∣.

• v is generally  u.

• p ≠ fn(y)
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The Bernoulli equation for the free stream flow just above the bound-
ary layer where there is no viscous shear,

p
ρ
+ u2∞

2
= constant

can be differentiated and used to eliminate the pressure gradient,

1
ρ
dp
dx

= −u∞du∞dx

so from eqn. (6.12):

∂u2

∂x
+ ∂(uv)

∂y
= u∞

du∞
dx

+ ν
∂2u
∂y2

(6.14)

And if there is no pressure gradient in the flow—if p and u∞ are constant
as they would be for flow past a flat plate—then eqns. (6.12), (6.13), and
(6.14) become

∂u2

∂x
+ ∂(uv)

∂y
= u

∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2

(6.15)

Predicting the velocity profile in the laminar boundary layer
without a pressure gradient

Exact solution. Two strategies for solving eqn. (6.15) for the velocity
profile have long been widely used. The first was developed by Prandtl’s
student, H. Blasius,5 before World War I. It is exact, and we shall sketch it
only briefly. First we introduce the stream function, ψ, into eqn. (6.15).
This reduces the number of dependent variables from two (u and v) to
just one—namely,ψ. We do this by substituting eqns. (6.10) in eqn. (6.15):

∂ψ
∂y

∂2ψ
∂y∂x

− ∂ψ
∂x

∂2ψ
∂y2

= ν
∂3ψ
∂y3

(6.16)

It turns out that eqn. (6.16) can be converted into an ordinary d.e.
with the following change of variables:

ψ(x,y) ≡ √u∞νx f(η) where η ≡
√
u∞
νx

y (6.17)

5Blasius achieved great fame for many accomplishments in fluid mechanics and then
gave it up. He is quoted as saying: “I decided that I had no gift for it; all of my ideas
came from Prandtl.”
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where f(η) is an as-yet-undertermined function. [This transformation is
rather similar to the one that we used to make an ordinary d.e. of the
heat conduction equation, between eqns. (5.44) and (5.45).] After some
manipulation of partial derivatives, this substitution gives (Problem 6.2)

f
d2f
dη2

+ 2
d3f
dη3

= 0 (6.18)

and

u
u∞

= df
dη

v√
u∞ν/x

= 1
2

(
η
df
dη

− f
)

(6.19)

The boundary conditions for this flow are

u(y = 0) = 0 or
df
dη

∣∣∣∣∣
η=0

= 0

u(y = ∞) = u∞ or
df
dη

∣∣∣∣∣
η=∞

= 1

v(y = 0) = 0 or f(η = 0) = 0




(6.20)

The solution of eqn. (6.18) subject to these b.c.’s must be done numeri-
cally. (See Problem 6.3.)

The solution of the Blasius problem is listed in Table 6.1, and the
dimensionless velocity components are plotted in Fig. 6.10. The u com-
ponent increases from zero at the wall (η = 0) to 99% of u∞ at η = 4.92.
Thus, the b.l. thickness is given by

4.92 = δ√
νx/u∞

or, as we anticipated earlier [eqn. (6.2)],

δ
x
= 4.92√

u∞x/ν
= 4.92√

Rex

Concept of similarity. The exact solution for u(x,y) reveals a most
useful fact—namely, that u can be expressed as a function of a single
variable, η:

u
u∞

= f ′(η) = f ′
(
y
√
u∞
νx

)
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Table 6.1 Exact velocity profile in the boundary layer on a flat
surface with no pressure gradient

y
√
u∞/νx u

/
u∞ v

√
x/νu∞

η f(η) f ′(η) (ηf ′ − f)
/
2 f ′′(η)

0.00 0.00000 0.00000 0.00000 0.33206
0.20 0.00664 0.06641 0.00332 0.33199
0.40 0.02656 0.13277 0.01322 0.33147
0.60 0.05974 0.19894 0.02981 0.33008
0.80 0.10611 0.26471 0.05283 0.32739
1.00 0.16557 0.32979 0.08211 0.32301
2.00 0.65003 0.62977 0.30476 0.26675
3.00 1.39682 0.84605 0.57067 0.16136
4.00 2.30576 0.95552 0.75816 0.06424
4.918 3.20169 0.99000 0.83344 0.01837
6.00 4.27964 0.99898 0.85712 0.00240
8.00 6.27923 1.00000− 0.86039 0.00001

This is called a similarity solution. To see why, we solve eqn. (6.2) for√
u∞
νx

= 4.92
δ(x)

and substitute this in f ′(y/
√
u∞/νx). The result is

f ′ = u
u∞

= fn
[

y
δ(x)

]
(6.21)

The velocity profile thus has the same shape with respect to the b.l.
thickness at each x-station. We say, in other words, that the profile is
similar at each station. This is what we found to be true for conduction
into a semi-infinite region. In that case [recall eqn. (5.51)], x/

√
t always

had the same value at the outer limit of the thermally disturbed region.
Boundary layer similarity makes it especially easy to use a simple

approximate method for solving other b.l. problems. This method, called
the momentum integral method, is the subject of the next subsection.

Example 6.2

Air at 27◦C blows over a flat surface with a sharp leading edge at
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Figure 6.10 The dimensionless velocity components in a lam-
inar boundary layer.

1.5 m/s. Find the b.l. thickness 1
2 m from the leading edge. Check the

b.l. assumption that u� v at the trailing edge.

Solution. The dynamic and kinematic viscosities are µ = 1.853 ×
10−5 kg/m·s and ν = 1.566× 10−5 m2/s. Then

Rex = u∞x
ν

= 1.5(0.5)
1.566× 10−5

= 47,893

The Reynolds number is low enough to permit the use of a laminar
flow analysis. Then

δ = 4.92x√
Rex

= 4.92(0.5)√
47,893

= 0.01124 = 1.124 cm

(Remember that the b.l. analysis is only valid if δ/x 1. In this case,
δ/x = 1.124/50 = 0.0225.) Finally, according to Fig. 6.10 or Table 6.1,



272 Laminar and turbulent boundary layers §6.2

v at x = 0.5 m is

v = 0.8604√
x/νu∞

= 0.8604

√
(1.566)(10−5)(1.5)

(0.5)
= 0.00590 m/s

or

v
u∞

= 0.00590
1.5

= 0.00393

Therefore, v is always u, at least so long as we are not near the leading
edge, where the b.l. assumptions themselves break down. We say more
about this breakdown after eqn. (6.34).

Momentum integral method.6 A second method for solving the b.l. mo-
mentum equation is approximate and much easier to apply to a wide
range of problems than is any exact method of solution. The idea is this:
We are not really interested in the details of the velocity or temperature
profiles in the b.l., beyond learning their slopes at the wall. [These slopes
give us the shear stress at the wall, τw = µ(∂u/∂y)y=0, and the heat
flux at the wall, qw = −k(∂T/∂y)y=0.] Therefore, we integrate the b.l.
equations from the wall, y = 0, to the b.l. thickness, y = δ, to make ordi-
nary d.e.’s of them. It turns out that while these much simpler equations
do not reveal anything new about the temperature and velocity profiles,
they do give quite accurate explicit equations for τw and qw .

Let us see how this procedure works with the b.l. momentum equa-
tion. We integrate eqn. (6.15), as follows, for the case in which there is
no pressure gradient (dp/dx = 0):∫ δ

0

∂u2

∂x
dy +

∫ δ

0

∂(uv)
∂y

dy = ν
∫ δ

0

∂2u
∂y2

dy

At y = δ, u can be approximated as the free stream value, u∞, and other
quantities can also be evaluated at y = δ just as though y were infinite:

∫ δ

0

∂u2

∂x
dy +

[
(uv)y=δ︸ ︷︷ ︸
=u∞v∞

− (uv)y=0︸ ︷︷ ︸
=0

]
= ν




(
∂u
∂y

)
y=δ︸ ︷︷ ︸

�0

−
(
∂u
∂y

)
y=0




(6.22)

6This method was developed by Pohlhausen, von Kármán, and others. See the dis-
cussion in [6.2, Chap. XII].
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The continuity equation (6.11) can be integrated thus:

v∞ − vy=0︸ ︷︷ ︸
=0

= −
∫ δ

0

∂u
∂x

dy (6.23)

Multiplying this by u∞ gives

u∞v∞ = −
∫ δ

0

∂uu∞
∂x

dy

Using this result in eqn. (6.22), we obtain

∫ δ

0

∂
∂x

[u(u−u∞)]dy = −ν ∂u
∂y

∣∣∣∣∣
y=0

Finally, we note that µ(∂u/∂y)y=0 is the shear stress on the wall, τw =
τw (x only), so this becomes7

d
dx

∫ δ(x)

0
u(u−u∞)dy = −τwρ (6.24)

Equation (6.24) expresses the conservation of linear momentum in
integrated form. It shows that the rate of momentum loss caused by the
b.l. is balanced by the shear force on the wall. When we use it in place of
eqn. (6.15), we are said to be using an integral method. To make use of
eqn. (6.24), we first nondimensionalize it as follows:

d
dx

[
δ
∫ 1

0

u
u∞

(
u
u∞

− 1
)
d
(
y
δ

)]
= − ν

u∞δ
∂(u/u∞)
∂(y/δ)

∣∣∣∣∣
y=0

= −τw(x)
ρu2∞

≡ −1
2
Cf (x) (6.25)

where τw/(ρu2∞/2) is defined as the skin friction coefficient, Cf .
Equation (6.25) will be satisfied precisely by the exact solution (Prob-

lem 6.4) for u/u∞. However, the point is to use eqn. (6.25) to determine
u/u∞ when we do not already have an exact solution. To do this, we
recall that the exact solution exhibits similarity. First, we guess the so-
lution in the form of eqn. (6.21): u/u∞ = fn(y/δ). This guess is made

7The interchange of integration and differentiation is consistent with Leibnitz’s rule
for differentiation of an integral (Problem 6.14).
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in such a way that it will fit the following four things that are true of the
velocity profile:

• u/u∞ = 0 at y/δ = 0

• u/u∞ � 1 at y/δ = 1

• d
(
u
u∞

)/
d
(
y
δ

)
� 0 at y/δ = 1




(6.26)

• and from eqn. (6.15), we know that at y/δ = 0:

u
∂u
∂x︸︷︷︸
=0

+ v︸︷︷︸
=0

∂u
∂y

= ν
∂2u
∂y2

∣∣∣∣∣
y=0

so

∂2(u/u∞)
∂(y/δ)2

∣∣∣∣∣
y/δ=0

= 0 (6.27)

If fn(y/δ) is written as a polynomial with four constants—a, b, c,
and d—in it,

u
u∞

= a+ b
y
δ
+ c

(
y
δ

)2

+ d
(
y
δ

)3

(6.28)

the four things that are known about the profile give

• 0 = a, which eliminates a immediately

• 1 = 0+ b + c + d

• 0 = b + 2c + 3d

• 0 = 2c, which eliminates c as well

Solving the middle two equations (above) for b and d, we obtain d = −1
2

and b = +3
2 , so

u
u∞

= 3
2
y
δ
− 1

2

(
y
δ

)3

(6.29)

This approximation velocity profile is compared with the exact Blasius
profile in Fig. 6.11, and they prove to be equal within a maximum error
of 8%. The only remaining problem is then that of calculating δ(x). To
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do this, we substitute eqn. (6.29) in eqn. (6.25) and get, after integration
(see Problem 6.5):

− d
dx

[
δ
(

39
280

)]
= − ν

u∞δ

(
3
2

)
(6.30)

or

− 39
280

(
2
3

)(
1
2

)
dδ2

dx
= − ν

u∞

We integrate this using the b.c. δ2 = 0 at x = 0:

δ2 = 280
13

νx
u∞

or

δ
x
= 4.64√

Rex
(6.31)

This b.l. thickness is of the correct functional form, and the constant is
low by only 5.6%.

The skin friction coefficient

The fact that the function u/u∞ = f ′(η) or fn(y/δ) gives all information
about flow in the b.l. must be stressed. For example, the shear stress can
be obtained from it by using Newton’s law of viscous shear. Thus,

τw = µ
∂u
∂y

∣∣∣∣∣
y=0

= µu∞

(
∂f ′

∂η
∂η
∂y

)
η=0

= µu∞
√
u∞√
νx

d2f
dη2

∣∣∣∣∣
η=0

But from Fig. 6.10 and Table 6.1, we see that (d2f/dη2)η=0 = 0.33206,
so

τw = 0.332
µu∞
x

√
Rex (6.32)

The integral method that we just outlined would have given 0.323 for the
constant in eqn. (6.32) instead of 0.332 (Problem 6.6).

The local skin friction coefficient, or local skin drag coefficient, is de-
fined as

Cf ≡ τw
ρu2∞/2

= 0.664√
Rex

(6.33)
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Figure 6.11 Comparison of the third-degree polynomial fit
with the exact b.l. velocity profile. (Notice that the approximate
result has been forced to u/u∞ = 1 instead of 0.99 at y = δ.)

The overall skin friction coefficient, Cf , is based on the average of the
shear stress, τw , over the length, L, of the plate

τw = 1
L

⌠⌡ L

0

τw dx = ρu2∞
2L

⌠⌡ L

0

0.664√
u∞x/ν

dx = 1.328
ρu2∞

2

√
ν

u∞L

so

Cf = 1.328√
ReL

(6.34)

As a matter of interest, we note that Cf (x) approaches infinity at the
leading edge of the flat surface. This means that to stop the fluid that
first touches the front of the plate—dead in its tracks—would require
infinite shear stress right at that point. Nature, of course, will not allow
such a thing to happen; and it turns out that the boundary layer analysis
is not really valid right at the leading edge.
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Actually, we must declare that the range x � 5δ (in which the b.l. is
relatively thick) is too close to the edge to use this analysis with accuracy.
This converts to

x > 600ν/u∞ for a boundary layer to exist

In Example 6.2, this condition is satisfied for all x’s greater than about
6 mm. This region is usually very small.

Example 6.3

Calculate the average shear stress and the overall friction coefficient
for the surface in Example 6.2 if its total length is L = 0.5 m. Com-
pare τw with τw at the trailing edge. At what point on the surface
does τw = τw? Finally, estimate what fraction of the surface can
legitimately be analyzed using boundary layer theory.

Solution.

Cf = 1.328√
Re0.5

= 1.328√
47,893

= 0.00607

and

τw = ρu2∞
2

Cf = 1.183(1.5)2

2
0.00607 = 0.00808 kg/m·s2︸ ︷︷ ︸

N/m2

(This is very little drag. It amounts only to about 1/50 ounce/m2.)
At x = L,

τw(x)
τw

∣∣∣∣
x=L

= ρu2∞/2

ρu2∞/2

[
0.664

/√
ReL

1.328
/√

ReL

]
= 1

2

and

τw(x) = τw where
0.664√

x
= 1.328√

0.5

so the local shear stress equals the average value, where

x = 1
8 m or

x
L
= 1

4
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Thus, the shear stress, which is initially infinite, plummets to τw one-
fourth of the way from the leading edge and drops only to one-half
of τw in the remaining 75% of the plate.

The boundary layer assumptions fail when

x < 600
ν
u∞

= 600
1.566× 10−5

1.5
= 0.0063 m

Thus, the preceding analysis should be good over almost 99% of the
0.5 m length of the surface.

6.3 The energy equation

Derivation

We now know how fluid moves in the b.l. Next, we must extend the heat
conduction equation to allow for the motion of the fluid. This equation
can be solved for the temperature field in the b.l., and its solution can be
used to calculate h, using Fourier’s law:

h = q
Tw − T∞

= − k
Tw − T∞

∂T
∂y

∣∣∣∣∣
y=0

(6.35)

To predict T , we extend the analysis done in Section 2.1. Figure 2.4
shows an element of a solid body subjected to a temperature field. We
allow this volume to contain fluid with a velocity field �u(x,y, z) in it, as
shown in Fig. 6.12. We make the following restrictive approximations:

• The fluid is incompressible. This means that ρ is constant for each
tiny parcel of fluid; we shall make the stronger approximation thatρ
is constant for all parcels of fluid. This approximation is reasonable
for most liquid flows and for gas flows moving at speeds less than
about 1/3 the speed of sound. We have seen in Sect. 6.2 that∇· �u =
0 for incompressible flow.

• Pressure variations in the flow are not large enough to affect ther-
modynamic properties. From thermodynamics, we know that the
specific internal energy, û, satisfies dû = cv dT + (∂û/∂p)T dp
and that the specific enthalpy, ĥ = û+p/ρ, satisfies dĥ = cp dT +
(∂ĥ/∂p)T dp. We shall neglect the dp contributions to both ener-
gies. We have already neglected the effect of p on ρ.
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Figure 6.12 Control volume in a
heat-flow and fluid-flow field.

• Temperature variations in the flow are not large enough to change
k significantly; we have already neglected temperature effects on ρ.

• Potential and kinetic energy changes are negligible in comparison
to thermal energy changes. Since the kinetic energy of a fluid can
change owing to pressure gradients, this again means that pressure
variations may not be too large.

• The viscous stresses do not dissipate enough energy to warm the
fluid significantly.

Just as we wrote eqn. (2.7) in Section 2.1, we now write conservation
of energy in the form

d
dt

∫
R
ρûdR︸ ︷︷ ︸

rate of internal
energy increase

in R

= −
∫
S
(ρĥ) �u · �ndS︸ ︷︷ ︸

rate of internal energy and
flow work out of R

−
∫
S
(−k∇T) · �ndS︸ ︷︷ ︸

net heat conduction
rate out of R

+
∫
R
q̇ dR︸ ︷︷ ︸

rate of heat
generation in R

(6.36)

In the third integral, �u · �ndS represents the volume flow rate through an
element dS of the control surface. The position of R is not changing in
time, so we can bring the time derivative inside the first integral. If we
then we call in Gauss’s theorem [eqn. (2.8)] to make volume integrals of
the surface integrals, eqn. (6.36) becomes∫

R

(
ρ
∂û
∂t
+ ρ∇ · (�u ĥ)−∇ · k∇T − q̇

)
dR = 0
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Because the integrand must vanish identically (recall the footnote on
pg. 55 in Chap. 2) and because k depends weakly on T ,

ρ
(
∂û
∂t
+∇ · (�uĥ)︸ ︷︷ ︸

)
− k∇2T − q̇ = 0

= �u · ∇ĥ+ ĥ∇ · �u︸ ︷︷ ︸
= 0, by continuity

Since we are neglecting pressure effects and density changes, we can
approximate changes in the internal energy by changes in the enthalpy:

dû = dĥ− d
(
p
ρ

)
≈ dĥ

Upon substituting dĥ ≈ cp dT , it follows that

ρcp

(
∂T
∂t︸ ︷︷ ︸

energy
storage

+ �u · ∇T︸ ︷︷ ︸
enthalpy

convection

)
= k∇2T︸ ︷︷ ︸

heat
conduction

+ q̇︸ ︷︷ ︸
heat

generation

(6.37)

This is the energy equation for an incompressible flow field. It is the
same as the corresponding equation (2.11) for a solid body, except for
the enthalpy transport, or convection, term, ρcp �u · ∇T .

Consider the term in parentheses in eqn. (6.37):

∂T
∂t
+ �u · ∇T = ∂T

∂t
+u

∂T
∂x

+ v
∂T
∂y

+w
∂T
∂z

≡ DT
Dt

(6.38)

DT/Dt is exactly the so-called material derivative, which is treated in
some detail in every fluid mechanics course. DT/Dt is the rate of change
of the temperature of a fluid particle as it moves in a flow field.

In a steady two-dimensional flow field without heat sources, eqn. (6.37)
takes the form

u
∂T
∂x

+ v
∂T
∂y

= α
(
∂2T
∂x2

+ ∂2T
∂y2

)
(6.39)

Furthermore, in a b.l., ∂2T/∂x2  ∂2T/∂y2, so the b.l. energy equation
is

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

(6.40)
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Heat and momentum transfer analogy

Consider a b.l. in a fluid of bulk temperature T∞, flowing over a flat sur-
face at temperature Tw . The momentum equation and its b.c.’s can be
written as

u
∂
∂x

(
u
u∞

)
+ v

∂
∂y

(
u
u∞

)
= ν

∂2

∂y2

(
u
u∞

)



u
u∞

∣∣∣∣
y=0

= 0

u
u∞

∣∣∣∣
y=∞

= 1

∂
∂y

(
u
u∞

)
y=∞

= 0

(6.41)

And the energy equation (6.40) can be written in terms of a dimensionless
temperature, Θ = (T − Tw)/(T∞ − Tw), as

u
∂Θ
∂x

+ v
∂Θ
∂y

= α
∂2Θ
∂y2




Θ(y = 0) = 0

Θ(y = ∞) = 1

∂Θ
∂y

∣∣∣∣∣
y=∞

= 0

(6.42)

Notice that the problems of predicting u/u∞ and Θ are identical, with
one exception: eqn. (6.41) has ν in it whereas eqn. (6.42) has α. If ν and
α should happen to be equal, the temperature distribution in the b.l. is

for ν = α :
T − Tw
T∞ − Tw

= f ′(η) derivative of the Blasius function

since the two problems must have the same solution.
In this case, we can immediately calculate the heat transfer coefficient

using eqn. (6.5):

h = k
T∞ − Tw

∂(T − Tw)
∂y

∣∣∣∣∣
y=0

= k
(
∂f ′

∂η
∂η
∂y

)
η=0

but (∂2f/∂η2)η=0 = 0.33206 (see Fig. 6.10) and ∂η/∂y = √
u∞/νx, so

hx
k
= Nux = 0.33206

√
Rex for ν = α (6.43)

Normally, in using eqn. (6.43) or any other forced convection equation,
properties should be evaluated at the film temperature, Tav = (Tw +
T∞)/2.



282 Laminar and turbulent boundary layers §6.4

Example 6.4

Water flows over a flat heater, 0.06 m in length, under high pressure
at 300◦C. The free stream velocity is 2 m/s and the heater is held at
315◦C. What is the average heat flux?

Solution. At Tav = (315+ 300)/2 = 307◦C:

ν = 0.124× 10−6 m2/s

α = 0.124× 10−6m2/s

Therefore, ν = α and we can use eqn. (6.43). First we must calculate
the average heat flux, q. To do this, we call Tw − T∞ ≡ ∆T and write

q = 1
L

∫ L

0
h∆T dx = k∆T

L

∫ L

0

1
x

Nux dx = 0.332
k∆T
L

∫ L

0

√
u∞
νx

dx

so

q = 2∆T
(

0.332
k
L
√

ReL

)
= 2qx=L

Thus,

h = 2hx=L = 0.664
0.520
0.06

√
2(0.06)

0.124× 10−6
= 5661 W/m2K

and

q = h∆T = 5661(315− 300) = 84,915 W/m2 = 84.9 kW/m2

Equation (6.43) is clearly a very restrictive heat transfer solution.
We now want to find how to evaluate q when ν does not equal α.

6.4 The Prandtl number and the boundary layer
thicknesses

Dimensional analysis

We must now look more closely at the implications of the similarity be-
tween the velocity and thermal boundary layers. We first ask what dimen-
sional analysis reveals about heat transfer in the laminar b.l. We know
by now that the dimensional functional equation for the heat transfer
coefficient, h, should be

h = fn(k,x, ρ, cp, µ,u∞)
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We have excluded Tw − T∞ on the basis of Newton’s original hypothesis,
borne out in eqn. (6.43), that h ≠ fn(∆T) during forced convection. This
gives seven variables in J/◦C , m, kg, and s, or 7− 4 = 3 pi-groups. Note
that, as we indicated at the end of Section 4.3, there is no conversion
between heat and work so it we should not regard J as N·m, but rather
as a separate unit. The dimensionless groups are then:

Π1 = hx
k
≡ Nux Π2 = ρu∞x

µ
≡ Rex

and a new group:

Π3 = µcp
k

≡ ν
α
≡ Pr, Prandtl number

Thus,

Nux = fn(Rex,Pr) (6.44)

in forced convection flow situations. Equation (6.43) was developed for
the case in which ν = α or Pr = 1; therefore, it is of the same form as
eqn. (6.44), although it does not display the Pr dependence of Nux .

To better understand the physical meaning of the Prandtl number, let
us briefly consider how to predict its value in a gas.

Kinetic theory of µ and k

Figure 6.13 shows a small neighborhood of a point of interest in a gas
in which there exists a velocity or temperature gradient. We identify the
mean free path of molecules between collisions as Q and indicate planes
at y ± Q/2 which bracket the average travel of those molecules found at
plane y . (Actually, these planes should be located closer to y ± Q for a
variety of subtle reasons. This and other fine points of these arguments
are explained in detail in [6.3].)

The shear stress, τyx , can be expressed as the change of momentum
of all molecules that pass through the y-plane of interest, per unit area:

τyx =
(

mass flux of molecules
from y − Q/2 to y + Q/2

)
·
(

change in fluid
velocity

)

The mass flux from top to bottom is proportional to ρC , where C , the
mean molecular speed of the stationary fluid, is� u or v in incompress-
ible flow. Thus,

τyx = C1

(
ρC

)(
Q
du
dy

)
N

m2
and this also equals µ

du
dy

(6.45)
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Figure 6.13 Momentum and energy transfer in a gas with a
velocity or temperature gradient.

By the same token,

qy = C2

(
ρcvC

)(
Q
dT
dy

)
and this also equals − k

dT
dy

where cv is the specific heat at constant volume. The constants, C1 and
C2, are on the order of unity. It follows immediately that

µ = C1

(
ρCQ

)
so ν = C1

(
CQ

)
and

k = C2

(
ρcvCQ

)
so α = C2

CQ
γ

where γ ≡ cp/cv is approximately a constant on the order of unity for a
given gas. Thus, for a gas,

Pr ≡ ν
α
= a constant on the order of unity

More detailed use of the kinetic theory of gases reveals more specific
information as to the value of the Prandtl number, and these points are
borne out reasonably well experimentally, as you can determine from
Appendix A:
• For simple monatomic gases, Pr = 2

3 .
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• For diatomic gases in which vibration is unexcited (such as N2 and
O2 at room temperature), Pr = 5

7 .

• As the complexity of gas molecules increases, Pr approaches an
upper value of unity.

• Pr is most insensitive to temperature in gases made up of the sim-
plest molecules because their structure is least responsive to tem-
perature changes.

In a liquid, the physical mechanisms of molecular momentum and
energy transport are much more complicated and Pr can be far from
unity. For example (cf. Table A.3):

• For liquids composed of fairly simple molecules, excluding metals,
Pr is of the order of magnitude of 1 to 10.

• For liquid metals, Pr is of the order of magnitude of 10−2 or less.

• If the molecular structure of a liquid is very complex, Pr might reach
values on the order of 105. This is true of oils made of long-chain
hydrocarbons, for example.

Thus, while Pr can vary over almost eight orders of magnitude in
common fluids, it is still the result of analogous mechanisms of heat and
momentum transfer. The numerical values of Pr, as well as the analogy
itself, have their origins in the same basic process of molecular transport.

Boundary layer thicknesses, δ and δt , and the Prandtl number

We have seen that the exact solution of the b.l. equations gives δ = δt
for Pr = 1, and it gives dimensionless velocity and temperature profiles
that are identical on a flat surface. Two other things should be easy to
see:
• When Pr > 1, δ > δt , and when Pr < 1, δ < δt . This is true because

high viscosity leads to a thick velocity b.l., and a high thermal dif-
fusivity should give a thick thermal b.l.

• Since the exact governing equations (6.41) and (6.42) are identical
for either b.l., except for the appearance of α in one and ν in the
other, we expect that

δt
δ
= fn

(
ν
α

only
)
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Therefore, we can combine these two observations, defining δt/δ ≡ φ,
and get

φ = monotonically decreasing function of Pr only (6.46)

The exact solution of the thermal b.l. equations proves this to be precisely
true.

The fact that φ is independent of x will greatly simplify the use of
the integral method. We shall establish the correct form of eqn. (6.46) in
the following section.

6.5 Heat transfer coefficient for laminar,
incompressible flow over a flat surface

The integral method for solving the energy equation

Integrating the b.l. energy equation in the same way as the momentum
equation gives∫ δt

0
u
∂T
∂x

dy +
∫ δt

0
v
∂T
∂y

dy = α
∫ δt

0

∂2T
∂y2

dy

And the chain rule of differentiation in the form xdy ≡ dxy − ydx,
reduces this to∫ δt

0

∂uT
∂x

dy −
∫ δt

0
T
∂u
∂x

dy +
∫ δt

0

∂vT
∂y

dy −
∫ δt

0
T
∂v
∂y

dy = α
∂T
∂y

∣∣∣∣∣
δt

0

or∫ δt

0

∂uT
∂x

dy + vT
∣∣∣∣δt

0︸ ︷︷ ︸
=T∞ v|y=δt−0

−
∫ δt

0
T

(
∂u
∂x

+ ∂v
∂y︸ ︷︷ ︸

= 0, eqn. (6.11)

)
dy

= α


 ∂T
∂y

∣∣∣∣∣
δt︸ ︷︷ ︸

=0

− ∂T
∂y

∣∣∣∣∣
0




We evaluate v at y = δt , using the continuity equation in the form of
eqn. (6.23), in the preceeding expression:∫ δt

0

∂
∂x

u(T − T∞)dy = 1
ρcp

(
−k ∂T

∂y

∣∣∣∣∣
0

)
= fn(x only)
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or

d
dx

∫ δt

0
u(T − T∞)dy = qw

ρcp
(6.47)

Equation (6.47) expresses the conservation of thermal energy in inte-
grated form. It shows that the rate thermal energy is carried away by
the b.l. flow is matched by the rate heat is transferred in at the wall.

Predicting the temperature distribution in the laminar thermal
boundary layer

We can continue to paraphrase the development of the velocity profile in
the laminar b.l., from the preceding section. We previously guessed the
velocity profile in such a way as to make it match what we know to be
true. We also know certain things to be true of the temperature profile.
The temperatures at the wall and at the outer edge of the b.l. are known.
Furthermore, the temperature distribution should be smooth as it blends
into T∞ for y > δt . This condition is imposed by setting dT/dy equal
to zero at y = δt . A fourth condition is obtained by writing eqn. (6.40)
at the wall, where u = v = 0. This gives (∂2T/∂y2)y=0 = 0. These four
conditions take the following dimensionless form:

T − T∞
Tw − T∞

= 1 at y/δt = 0

T − T∞
Tw − T∞

= 0 at y/δt = 1

d[(T − T∞)/(Tw − T∞)]
d(y/δt)

= 0 at y/δt = 1

∂2[(T − T∞)/(Tw − T∞)]
∂(y/δt)2

= 0 at y/δt = 0




(6.48)

Equations (6.48) provide enough information to approximate the tem-
perature profile with a cubic function.

T − T∞
Tw − T∞

= a+ b
y
δt
+ c

(
y
δt

)2

+ d
(
y
δt

)3

(6.49)

Substituting eqn. (6.49) into eqns. (6.48), we get

a = 1 − 1 = b + c + d 0 = b + 2c + 3d 0 = 2c
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which gives

a = 1 b = −3
2 c = 0 d = 1

2

so the temperature profile is

T − T∞
Tw − T∞

= 1− 3
2
y
δt
+ 1

2

(
y
δt

)3

(6.50)

Predicting the heat flux in the laminar boundary layer

Equation (6.47) contains an as-yet-unknown quantity—the thermal b.l.
thickness, δt . To calculate δt , we substitute the temperature profile,
eqn. (6.50), and the velocity profile, eqn. (6.29), in the integral form of
the energy equation, (6.47), which we first express as

u∞(Tw − T∞)
d
dx

[
δt

∫ 1

0

u
u∞

(
T − T∞
Tw − T∞

)
d
(
y
δt

)]

= −α(Tw − T∞)
δt

d
(
T − T∞
Tw − T∞

)
d(y/δt)

∣∣∣∣∣∣∣∣∣
y/δt=0

(6.51)

There is no problem in completing this integration if δt < δ. However,
if δt > δ, there will be a problem because the equation u/u∞ = 1, instead
of eqn. (6.29), defines the velocity beyond y = δ. Let us proceed for the
moment in the hope that the requirement that δt R δ will be satisfied.
Introducing φ ≡ δt/δ in eqn. (6.51) and calling y/δt ≡ η, we get

δt
dδt
dx


 ∫ 1

0

(
3
2
ηφ− 1

2
η3φ3

)(
1− 3

2
η+ 1

2
η3

)
dη︸ ︷︷ ︸

= 3
20φ− 3

280φ3


 = 3α

2u∞
(6.52)

Since φ is a constant for any Pr [recall eqn. (6.46)], we separate variables:

dδ2
t

dx
= 3α/u∞(

3
20

φ− 3
280

φ3
)
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Figure 6.14 The exact and approximate Prandtl number influ-
ence on the ratio of b.l. thicknesses.

Integrating this result with respect to x and taking δt = 0 at x = 0, we
get

δt =
√

3αx
u∞

/√
3

20
φ− 3

280
φ3 (6.53)

But δ = 4.64x/
√

Rex in the integral formulation [eqn. (6.31)]. We divide
by this value of δ to be consistent and obtain

δt
δ
≡ φ = 0.9638

/√
Prφ

(
1−φ2/14

)
Rearranging this gives

δt
δ
= 1

1.025 Pr1/3
[

1− (δ2
t /14δ2)

]1/3 �
1

1.025 Pr1/3 (6.54)

The unapproximated result above is shown in Fig. 6.14, along with the
results of Pohlhausen’s precise calculation (see Schlichting [6.2, Chap. 14]).
It turns out that the exact ratio, δ/δt , is represented with great accuracy
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by

δt
δ
= Pr−1/3 0.6 B Pr B 50 (6.55)

So the integral method is accurate within 2.5% in the Prandtl number
range indicated.

Notice that Fig. 6.14 is terminated for Pr less than 0.6. The reason for
doing this is that the lowest Pr for pure gases is 0.67, and the next lower
values of Pr are on the order of 10−2 for liquid metals. For Pr = 0.67,
δt/δ = 1.143, which violates the assumption that δt B δ, but only by a
small margin. For, say, mercury at 100◦C, Pr = 0.0162 and δt/δ = 3.952,
which violates the condition by an intolerable margin. We therefore have
a theory that is acceptable for gases and all liquids except the metallic
ones.

The final step in predicting the heat flux is to write Fourier’s law:

q = −k ∂T
∂y

∣∣∣∣∣
y=0

= −k Tw − T∞
δt

∂
(
T − T∞
Tw − T∞

)
∂(y/δt)

∣∣∣∣∣∣∣∣∣
y/δt=0

(6.56)

Using the dimensionless temperature distribution given by eqn. (6.50),
we get

q = +k Tw − T∞
δt

3
2

or

h ≡ q
∆T

= 3k
2δt

= 3
2
k
δ
δ
δt

(6.57)

and substituting eqns. (6.54) and (6.31) for δ/δt and δ, we obtain

Nux ≡ hx
k
= 3

2

√
Rex

4.64
1.025 Pr1/3 = 0.3314 Re1/2

x Pr1/3

Considering the various approximations, this is very close to the result
of the exact calculation, which turns out to be

Nux = 0.332 Re1/2
x Pr1/3 0.6 B Pr B 50 (6.58)

This expression gives very accurate results under the assumptions on
which it is based: a laminar two-dimensional b.l. on a flat surface, with
Tw = constant and 0.6 B Pr B 50.



§6.5 Heat transfer coefficient for laminar, incompressible flow over a flat surface 291

Figure 6.15 A laminar b.l. in a low-Pr liquid. The velocity b.l.
is so thin that u � u∞ in the thermal b.l.

Some other laminar boundary layer heat transfer equations

High Pr. At high Pr, eqn. (6.58) is still close to correct. The exact solution
is

Nux �→ 0.339 Re1/2
x Pr1/3, Pr �→∞ (6.59)

Low Pr. Figure 6.15 shows a low-Pr liquid flowing over a flat plate. In
this caseδt � δ, and for all practical purposesu = u∞ everywhere within
the thermal b.l. It is as though the no-slip condition [u(y = 0) = 0] and
the influence of viscosity were removed from the problem. Thus, the
dimensional functional equation for h becomes

h = fn
(
x,k, ρcp,u∞

)
(6.60)

There are five variables in J/◦C, m, and s, so there are only two pi-groups.
They are

Nux = hx
k

and Π2 ≡ RexPr = u∞x
α

The new group, Π2, is called a Péclét number, Pex , where the subscript
identifies the length upon which it is based. It can be interpreted as
follows:

Pex ≡ u∞x
α

= ρcpu∞∆T
k∆T

= heat capacity rate of fluid in the b.l.
axial heat conductance of the b.l.

(6.61)
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So long as Pex is large, the b.l. assumption that ∂2T/∂x2  ∂2T/∂y2

will be valid; but for small Pex (i.e., Pex  100), it will be violated and a
boundary layer solution cannot be used.

The exact solution of the b.l. equations gives, in this case:

Nux = 0.565 Pe1/2
x




Pex ≥ 100 and

Pr � 1
100 or

Rex ≥ 104

(6.62)

General relationship. Churchill and Ozoe [6.4] recommend the follow-
ing empirical correlation for laminar flow on a constant-temperature flat
surface for the entire range of Pr:

Nux = 0.3387 Re1/2
x Pr1/3[

1+ (0.0468/Pr)2/3
]1/4 Pex > 100 (6.63)

This relationship proves to be quite accurate, and it approximates eqns.
(6.59) and (6.62), respectively, in the high- and low-Pr limits. The calcu-
lations of an average Nusselt number for the general case is left as an
exercise (Problem 6.10).

Boundary layer with an unheated starting length Figure 6.16 shows
a b.l. with a heated region that starts at a distance x0 from the leading
edge. The heat transfer in this instance is easily obtained using integral
methods (see, e.g., [6.5, Chap. 10]):

Nux = 0.332 Re1/2
x Pr1/3[

1− (x0/x)3/4
]1/3 , x > x0 (6.64)

Average heat transfer coefficient, h. The heat transfer coefficient h, is
the ratio of two quantities, q and ∆T , either of which might vary with x.
So far, we have only dealt with the uniform wall temperature problem.
Equations (6.58), (6.59), (6.62), and (6.63), for example, can all be used to
calculate q(x) when (Tw − T∞) ≡ ∆T is a specified constant. In the next
subsection, we discuss the problem of predicting [T(x)− T∞] when q is
a specified constant. This is called the uniform wall heat flux problem.
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Figure 6.16 A b.l. with an unheated region at the leading edge.

The term h is used to designate either q/∆T in the uniform wall tem-
perature problem or q/∆T in the uniform wall heat flux problem. Thus,

uniform wall temp.: h ≡ q
∆T

= 1
∆T

[
1
L

∫ L

0
qdx

]
= 1
L

∫ L

0
h(x)dx

(6.65)

uniform heat flux: h ≡ q
∆T

= q
1
L

∫ L

0
∆T(x)dx

(6.66)

The Nusselt number based on h and a characteristic length, L, is desig-
nated NuL. This is not to be construed as an average of Nux , which would
be meaningless in either of these cases.

Thus, for a flat surface (with x0 = 0), we use eqn. (6.58) in eqn. (6.65)
to get

h = 1
L

∫ L

0
h(x)dx︸ ︷︷ ︸

k
x Nux

= 0.332kPr1/3

L

√
u∞
ν

∫ L

0

√
xdx
x

= 0.664 Re1/2
L Pr1/3

(
k
L

)
(6.67)

Thus, h = 2h(x = L) in a laminar flow, and

NuL = hL
k
= 0.664 Re1/2

L Pr1/3 (6.68)

Likewise for liquid metal flows:

NuL = 1.13 Pe1/2
L (6.69)
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Some final observations. The preceding results are restricted to the
two-dimensional, incompressible, laminar b.l. on a flat isothermal wall at
velocities that are not too high. These conditions are usually met if:

• Rex or ReL is not above the turbulent transition value, which is
typically a few hundred thousand.

• The Mach number of the flow, Ma ≡ u∞/(sound speed), is less than
about 0.3. (Even gaseous flows behave incompressibly at velocities
well below sonic.) A related condition is:

• The Eckert number, Ec ≡ u2∞/cp(Tw−T∞), is substantially less than
unity. (This means that heating by viscous dissipation—which we
have neglected—does not play any role in the problem. This as-
sumption was included implicitly when we treated J as an indepen-
dent unit in the dimensional analysis of this problem.)

It is worthwhile to notice how h and Nu depend on their independent
variables:

h or h∝ 1√
x

or
1√
L
,

√
u∞, ν−1/6, (ρcp)1/3, k2/3

Nux or NuL ∝
√
x or L,

√
u∞, ν−1/6, (ρcp)1/3, k−1/3

(6.70)

Thus, h �→ ∞ and Nux vanishes at the leading edge, x = 0. Of course,
an infinite value of h, like infinite shear stress, will not really occur at
the leading edge because the b.l. description will actually break down in
a small neighborhood of x = 0.

In all of the preceding considerations, the fluid properties have been
assumed constant. Actually, k, ρcp, and especially µ might all vary no-
ticeably with T within the b.l. It turns out that if properties are all eval-
uated at the average temperature of the b.l. or film temperature (Tw +
T∞)/2, the results will normally be quite accurate. It is also worth noting
that, although properties are given only at one pressure in Appendix A;
µ, k, and cp change very little with pressure, especially in liquids.

Example 6.5

Air at 20◦C and moving at 15 m/s is warmed by an isothermal steam-
heated plate at 110◦C, ½ m in length and ½ m in width. Find the
average heat transfer coefficient and the total heat transferred. What
are h, δt , and δ at the trailing edge?
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Solution. We evaluate properties at T = (110+20)/2 = 65◦C. Then

Pr = 0.707 and ReL = u∞L
ν

= 15(0.5)
0.0000194

= 386,600

so the flow ought to be laminar up to the trailing edge. The Nusselt
number is then

NuL = 0.664 Re1/2
L Pr1/3 = 367.8

and

h = 367.8
k
L
= 367.8(0.02885)

0.5
= 21.2 W/m2K

The value is quite low because of the low conductivity of air. The total
heat flux is then

Q = hA∆T = 21.2(0.5)2(110− 20) = 477 W

By comparing eqns. (6.58) and (6.68), we see that h(x = L) = ½h, so

h(trailing edge) = 1
2(21.2) = 10.6 W/m2K

And finally,

δ(x = L) = 4.92L
/√

ReL = 4.92(0.5)√
386,600

= 0.00396 m

= 3.96 mm

and

δt = δ
3√Pr

= 3.96
3√0.707

= 4.44 mm

The problem of uniform wall heat flux

When the heat flux at the heater wall, qw , is specified instead of the
temperature, it is Tw that we need to know. We leave the problem of
finding Nux for qw = constant as an exercise (Problem 6.11). The exact
result is

Nux = 0.453 Re1/2
x Pr1/3 (6.71)



296 Laminar and turbulent boundary layers §6.5

where Nux = hx/k = qwx/k(Tw − T∞). The integral method gives the
same result with a slightly lower constant (0.417).

We must be very careful in discussing average results in the constant
heat flux case. The problem now might be that of finding an average
temperature difference (cf. (6.66)):

Tw − T∞ = 1
L

∫ L

0
(Tw − T∞)dx = 1

L

∫ L

0

qwx
k(0.453

√
u∞/ν Pr1/3)

dx√
x

or

Tw − T∞ = qwL/k
0.6795 Re1/2

L Pr1/3 (6.72)

which can be put into the form NuL = 0.6795 Re1/2
L Pr1/3 (although the

Nusselt number yields an awkward nondimensionalization for Tw − T∞).
Churchill and Ozoe [6.4] have pointed out that their eqn. (6.63) will de-
scribe (Tw − T∞) with high accuracy over the full range of Pr if the con-
stants are changed as follows:

• 0.3387 is changed to 0.4637.

• 0.0468 is changed to 0.02052.

Example 6.6

Air at 15◦C flows at 1.8 m/s over a 0.6 m-long heating panel. The
panel is intended to supply 420 W/m2 to the air, but the surface can
sustain only about 105◦C without being damaged. Is it safe? What is
the average temperature of the plate?

Solution. In accordance with eqn. (6.71),

∆Tmax = ∆Tx=L = qL
kNux=L

= qL/k
0.453 Re1/2

x Pr1/3

or if we evaluate properties at (85+ 15)/2 = 50◦C, for the moment,

∆Tmax = 420(0.6)/0.0278

0.453
[
0.6(1.8)/1.794× 10−5

]1/2 (0.709)1/3
= 91.5◦C

This will give Twmax = 15 + 91.5 = 106.5◦C. This is very close to
105◦C. If 105◦C is at all conservative, q = 420 W/m2 should be safe—
particularly since it only occurs over a very small distance at the end
of the plate.
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From eqn. (6.72) we find that

∆T = 0.453
0.6795

∆Tmax = 61.0◦C

so

Tw = 15+ 61.0 = 76.0◦C

6.6 The Reynolds analogy

The analogy between heat and momentum transfer can now be general-
ized to provide a very useful result. We begin by recalling eqn. (6.25),
which is restricted to a flat surface with no pressure gradient:

d
dx

[
δ
∫ 1

0

u
u∞

(
u
u∞

− 1
)
d
(
y
δ

)]
= −Cf

2
(6.25)

and by rewriting eqns. (6.47) and (6.51), we obtain for the constant wall
temperature case:

d
dx

[
φδ

∫ 1

0

u
u∞

(
T − T∞
Tw − T∞

)
d
(
y
δt

)]
= qw
ρcpu∞(Tw − T∞)

(6.73)

But the similarity of temperature and flow boundary layers to one another
[see, e.g., eqns. (6.29) and (6.50)], suggests the following approximation,
which becomes exact only when Pr = 1:

T − T∞
Tw − T∞

δ =
(

1− u
u∞

)
δt

Substituting this result in eqn. (6.73) and comparing it to eqn. (6.25), we
get

− d
dx

[
δ
∫ 1

0

u
u∞

(
u
u∞

− 1
)
d
(
y
δ

)]
= −Cf

2
= − qw

ρcpu∞(Tw − T∞)φ2

(6.74)

Finally, we substitute eqn. (6.55) to eliminate φ from eqn. (6.74). The
result is one instance of the Reynolds-Colburn analogy :8

h
ρcpu∞

Pr2/3 = Cf
2

(6.75)

8Reynolds [6.6] developed the analogy in 1874. Colburn made important use of it in
this century. The form given is for flat plates with 0.6 ≤ Pr ≤ 50. The Prandtl number
factor is usually a little different for other flows or other ranges of Pr.
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For use in Reynolds’ analogy, Cf must be a pure skin friction coefficient.
The profile drag that results from the variation of pressure around the
body is unrelated to heat transfer. The analogy does not apply when
profile drag is included in Cf .

The dimensionless group h/ρcpu∞ is called the Stanton number. It
is defined as follows:

St, Stanton number ≡ h
ρcpu∞

= Nux
RexPr

The physical significance of the Stanton number is

St = h∆T
ρcpu∞∆T

= actual heat flux to the fluid
heat flux capacity of the fluid flow

(6.76)

The group St Pr2/3 was dealt with by the chemical engineer Colburn, who
gave it a special symbol:

j ≡ Colburn j-factor = St Pr2/3 = Nux
RexPr1/3 (6.77)

Example 6.7

Does the equation for the Nusselt number on an isothermal flat sur-
face in laminar flow satisfy the Reynolds analogy?

Solution. If we rewrite eqn. (6.58), we obtain

Nux
RexPr1/3 = St Pr2/3 = 0.332√

Rex
(6.78)

But comparison with eqn. (6.33) reveals that the left-hand side of
eqn. (6.78) is precisely Cf/2, so the analogy is satisfied perfectly. Like-
wise, from eqns. (6.68) and (6.34), we get

NuL
ReLPr1/3 ≡ St Pr

2/3 = 0.664√
ReL

= Cf

2
(6.79)

The Reynolds-Colburn analogy can be used directly to infer heat trans-
fer data from measurements of the shear stress, or vice versa. It can also
be extended to turbulent flow, which is much harder to predict analyti-
cally. We shall undertake that problem in the next section.
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Example 6.8

How much drag force does the air flow in Example 6.5 exert on the
heat transfer surface?

Solution. From eqn. (6.79) in Example 6.7, we obtain

Cf = 2 NuL
ReL Pr1/3

From Example 6.5 we obtain NuL, ReL, and Pr1/3:

Cf = 2(367.8)
(386,600)(0.707)1/3

= 0.002135

so

τyx = (0.002135)
1
2
ρu2∞ =

(0.002135)(1.05)(15)2

2
= 0.2522 kg/m·s2

and the force is

τyxA = 0.2522(0.5)2 = 0.06305 kg·m/s2 = 0.06305 N

= 0.23 oz

6.7 Turbulent boundary layers

Turbulence

Big whirls have little whirls,
That feed on their velocity.
Little whirls have littler whirls,
And so on, to viscosity.

This bit of doggerel by the English fluid mechanic, L. F. Richardson, tells
us a great deal about the nature of turbulence. Turbulence in a fluid can
be viewed as a spectrum of coexisting vortices of different sizes that dis-
sipate energy from the larger ones to the smaller ones until we no longer
see macroscopic vortices (or “whirls”). Then we identify the process as
viscous dissipation.

The next time the weatherman shows a satellite photograph of North
America on the 10:00 p.m. news, notice the cloud patterns. There will be



300 Laminar and turbulent boundary layers §6.7

one or two enormous vortices of continental proportions. These huge
vortices, in turn, feed smaller “weather-making” vortices on the order of
hundreds of miles in diameter. These further dissipate into vortices of
cyclone and tornado proportions—sometimes with that level of violence
but more often not. These dissipate into still smaller whirls as they in-
teract with the ground and its various protrusions. The next time the
wind blows, stand behind any tree and feel the vortices. In the great
plains, where there are not many ground vortex generators, you will see
small cyclonic eddies called “dust devils.” The process continues right
on down to molecular dimensions. There, momentum exchange is no
longer identifiable as turbulence but appears as viscosity.

The same kind of process exists within, say, a turbulent pipe flow at
high Reynolds number. Such a flow is shown in Fig. 6.17. Turbulence
in such a case consists of coexisting vortices which vary in size from a
substantial fraction of the pipe radius down to molecular dimensions.
The spectrum of sizes varies with location in the pipe. The size and
intensity of vortices at the wall must clearly approach zero, since the
fluid velocity approaches zero at the wall.

Figure 6.17 shows the fluctuation of a typical flow variable—namely,
velocity—both with location in the pipe and with time. This fluctuation
arises because of the turbulent motions that are superposed on the aver-
age local flow. Other flow variables, such as T or ρ, can also vary in the
same manner. For any variable we can write a local time-average value
as

u ≡ 1
T

∫ T

0
udt (6.80)

where T is a time that is much longer than the period of typical fluc-
tuations.9 Equation (6.80) can only be written for so-called stationary
processes—ones for which u is nearly time-independent.

If we substitute u = u+u′ in eqn. (6.80), where u is the actual local
velocity and u′ is the instantaneous magnitude of the fluctuation, we
obtain

u = 1
T

∫ T

0
udt︸ ︷︷ ︸

u

+ 1
T

∫ T

0
u′ dt︸ ︷︷ ︸

u′

(6.81)

9Take care not to interpret this T as a time constant; time constants are denoted
as T .
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Figure 6.17 Fluctuation of u and other quantities in a turbu-
lent pipe flow.

This is consistent with the fact that

u′ or any other average fluctuation = 0 (6.82)

We now want to create a measure of the size, or lengthscale, of tur-
bulent fluctuations. This might be done experimentally by placing two
velocity-measuring devices very close to one another in a turbulent flow
field. There will then be a very high correlation between the two measure-
ments. Then, suppose that the two velocity probes are moved apart until
the measurements first become unrelated to one another. That spacing
gives an indication of the average size of the turbulent motions.

Prandtl invented a slightly different (although related) measure of the
lengthscale of turbulence, called the mixing length, Q. He saw Q as an
average distance that a parcel of fluid moves between interactions. It
has a physical significance similar to that of the molecular mean free
path. It is harder to devise a clean experimental measure of Q than of
the lengthscale of turbulence. But we can use Q to examine the notion of
turbulent shear stress.
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Figure 6.18 The shear stress, τyx , in a laminar or turbulent flow.

The contribution of turbulence to the shear stress arises from the
same kind of momentum exchange process that gives rise to the molec-
ular viscosity. Recall that, in the latter case, a kinetic calculation gave
eqn. (6.45)

τyx = C1

(
ρC

)(
Q
du
dy

)
= µ

du
dy

(6.45)

where Q was the molecular mean free path. In the turbulent flow case,
pictured in Fig. 6.18, we can think of Prandtl’s parcels of fluid as carrying
the x-momentum, rather than molecules. We rewrite eqn. (6.45) in the
following way:

• Q changes from the mean free path to the mixing length.

• C is replaced by v = v + v′, the vertical speed of fluid parcels

• The derivative du/dy is approximated as u′/Q.

Then

τ′yx = C1ρ
(
v + v′

)
u′ (6.83)

Equation (6.83) can also be derived formally and precisely with the
help of the Navier-Stokes equation. When this is done, C1 comes out
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equal to −1. Then

τ′yx = −ρ
T

∫ T

0

(
vu′ + v′u′

)
dt = −ρv u′︸︷︷︸

=0

−ρv′u′ (6.84)

Notice that, while u′ = v′ = 0, averages of cross products of fluctuations
(such as u′v′ or u′2) do not generally vanish. Thus, the time average of
the turbulence component of shear stress is

τ′yx = −ρv′u′ = τ′yx (6.85)

In addition to the turbulent shear stress, the flow will have a mean shear
stress associated with the mean velocity gradient, ∂u/∂y .

It is not obvious how to calculate v′u′ (although it can be measured),
so we shall not make direct use of eqn. (6.85). Still, the essential similarity
of the mechanisms giving rise to laminar and turbulent shear stresses
suggests that the total time-average shear stress, τyx , might be expressed
as a combination of mean flow and turbulence contributions that are each
proportional to the mean velocity gradient:

τyx = µ
∂u
∂y

+
(

some other factor, which
reflects turbulent mixing

)
︸ ︷︷ ︸

≡ ρ · εm

∂u
∂y

(6.86)

or

τyx = ρ (ν + εm)
∂u
∂y

(6.87)

where εm is called the eddy diffusivity for momentum. We shall use this
characterization in calculating the heat transfer.

The Reynolds-Colburn analogy for turbulent flow

The eddy diffusivity was actually introduced by Boussinesq [6.7] in 1877.
It was subsequently proposed that Fourier’s law might likewise be mod-
ified to

q = −k ∂T
∂y

−
(

another constant, which
reflects turbulent mixing

)
︸ ︷︷ ︸

≡ ρcp · εh

∂T
∂y
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where T is the average of the fluctuating temperature. Therefore,

q = −ρcp (α+ εh)
∂T
∂y

(6.88)

where εh is called the eddy diffusivity of heat. This immediately suggests
yet another definition:

turbulent Prandtl number, Prt ≡ εm
εh

(6.89)

Equation (6.88) can be written in terms of ν and εm by introducing Pr
and Prt into it. Thus,

q
ρcp

= −
(
ν
Pr
+ εm

Prt

)
dT
dy

(6.90)

which looks a little like eqn. (6.87) when the latter is written in the form

τyx
ρ

= (ν + εm)
du
dy

(6.91)

Notice that the derivatives have been changed from partial to total.
This restricts the use of eqns. (6.90) and (6.91), in which u and T are
predominantly y-dependent. This is strictly true only in the so-called
parallel flows—ones in which all streamlines and isotherms are parallel.
Parallel flow exists in pipes, but it is only an approximation in boundary
layers.

Before trying to build a form of the Reynolds analogy for turbulent
flow, we must note the behavior of Pr and Prt :

• Pr is a physical property of the fluid. It is both theoretically and
actually near unity for ideal gases, but for liquids it may differ from
unity by orders of magnitude.

• Prt is a property of the flow field more than of the fluid. The nu-
merical value of Prt is normally well within a factor of 2 of unity. It
varies with location in the b.l., but it is often near 0.85.

Let us first consider what will happen if Pr = Prt = 1. Then

q
ρc

= − (ν + εm)
dT
dy

= −τyx
ρ

dy
du

dT
dy

= −τyx
ρ

dT
du
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So, at the wall,

qw(x) = −cpτw(x) d(T − Tw)
du

(6.92)

In laminar flow, for Pr = 1, (T−Tw)/(T∞−Tw) = u/u∞. Therefore, we
presume this same fact to be true for turbulent flow when Pr = Prt = 1.
Equation (6.92) then becomes

qw(x) = −cpτw(x) d
du

[
(T∞ − Tw)

u
u∞

]
or

qw(x) = k
µ
Tw − T∞
u∞

τw(x) (6.93)

since Pr = µcp/k = 1. We define (Tw−T∞) ≡ ∆T and rearrange eqn. (6.93)
to obtain

qw(x)
k∆T

x = 1
2
u∞x
ν

τw(x)
ρu2∞/2

or

Nux = 1
2 RexCf (x) (6.94)

Equation (6.94) is based upon the assumption that Pr = Prt = 1 and
upon the notion that the flow is parallel. It is also identical with the
corresponding laminar flow equation for heat transfer in a b.l. with Pr = 1.
Recall eqns. (6.75) and (6.77), which can be written as

j = StxPr2/3 = Cf
2

0.5 ≤ Pr (6.95)

This suggests that the same result might also apply to the turbulent b.l.
on an isothermal plate when Pr ≠ 1. In fact, the result is a bit more
complicated for turbulent boundary layers [6.1, §6.10]:

Stx =
Cf

/
2

1+ 13
(

Pr2/3 − 1
)√

Cf
/
2

0.7 ≤ Pr (6.96)

The above formula can be approximated by the Stanton number from
eqn. (6.95) for Prandtl numbers not too far from unity. We have noted
already that eqn. (6.95) is called the Reynolds-Colburn analogy. Both
results are only for smooth walls with little or no pressure gradient.
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Predictions of heat transfer in the turbulent boundary layer

The skin friction coefficient, Cf , in this case is no longer the laminar
value, 0.664/

√
Rex . It is, instead, the value appropriate to the turbulent

flow in question. For example, Schlichting ([6.2, Chap. XXI]) shows that
on a smooth flat plate in the low-Re turbulent b.l. range:

Cf = 0.0592

Re1/5
x

, 5× 105 B Rex B 107 (6.97)

In this case eqn. (6.95) becomes

StxPr2/3 = 0.0296

Re1/5
x

or

Nux = 0.0296 Re0.8
x Pr1/3 (6.98)

The Nusselt number based on h is obtained from eqn. (6.98) as follows:

NuL = L
k
h = 0.0296 Pr1/3 L

k

[
k
L

∫ L

0

(
1
x

Re0.8
x

)
dx

]

where we ignore the fact that there is a laminar region at the front of the
plate. Thus,

NuL = 0.0370 Re0.8
L Pr1/3 (6.99)

A flat heater with a turbulent b.l. on it actually has a laminar b.l. be-
tween x = 0 and x = xtransition, as is indicated in Fig. 6.4. The obvious
way to calculate h in this case is to write

h = 1
L∆T

∫ L

0
qdx

= 1
L

[∫ xtransition

0
hlaminar dx +

∫ L

xtransition

hturbulent dx
] (6.100)

where xtransition = (ν/u∞)Retransition. Thus, we substitute eqns. (6.58)
and (6.98) in eqn. (6.100) and obtain, for 0.6 B Pr B 50,

NuL = 0.037 Pr1/3
{

Re0.8
L −

[
Re0.8

transition − 17.95 (Retransition)1/2
]}
(6.101)
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If ReL � Retransition, this result reduces to eqn. (6.99).
Whitaker [6.8] offers the following correlation for NuL, which is simi-

lar in form to eqn. (6.101):

NuL = 0.036 Pr0.43
(

Re0.8
L − 9200

)(
µ∞
µw

)1/4

0.7 ≤ Pr ≤ 400

(6.102)

This expression has been corrected to account for the variability of liquid
viscosity with the factor (µ∞/µw)1/4, where µ∞ is evaluated at the free
stream temperature, T∞, and µw is evaluated at the wall temperature,
Tw . If eqn. (6.102) is used to predict heat transfer to a gaseous flow, the
viscosity-ratio correction term should not be used. This is because the
viscosity of a gas rises with temperature instead of dropping, and the
correction will be incorrect. Notice, too, that eqn. (6.102) compares very
well with eqn. (6.101) when Pr is on the order of unity, if Retransition is
only about 200,000.

Finally, it is important to remember that eqns. (6.101) and (6.102)
should be used only when ReL is substantially above the transitional
value.

A problem with the preceding relations is that they do not really deal
with the question of heat transfer in the rather lengthy transition region.
Both eqns. (6.101) and (6.102) are based on the assumption that flow
abruptly passes from laminar to turbulent at a critical value of x, and
we have noted in the context of Fig. 6.4 that this is not what occurs.
The location of the transition depends upon such variables as surface
roughness and the turbulence, or lack of it, in the stream approaching
the heater. Churchill [6.9] suggests correlating any particular set of data
with

NuL − 0.45
0.6774φ1/2

=

1+ (φ/12,500)3/5[

1+ (φum/φ)7/2
]2/5




1/2

(6.103)

where

φ ≡ ReLPr2/3

[
1+

(
0.0468

Pr

)2/3
]−1/2
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and φum is a number between about 105 and 107. The actual value of
φum must be fit to the particular set of data. In a very “clean” system,
φum will be larger; in a very “noisy” one, it will be smaller.

The advantage of eqn. (6.103) is that, once φum is known, it will pre-
dict qw through the transition regime.

Example 6.9

Ammonia at 100◦C flows at 15 m/s over a flat surface 1.6 m in length
at 200◦C. Evaluate h.

Solution. The properties of NH3 at (100 + 200)/2 = 150◦C are
ν = 2.97 × 10−5 m2/s, k = 0.0391 W/m·K, and Pr = 0.87. ReL =
1.6(15)/2.97(10)−5 = 808,000, so the flow is turbulent over a part of
the surface. Then if we take Retransition as 400,000 in eqn. (6.101), we
get

NuL = 0.037(0.87)1/3
{
(808,000)0.8

−
[

400,0000.8 − 17.95(400,000)1/2
]}
= 1209

so

h = 1209k
L

= 1209(0.0391)
1.6

= 29.5 W/m2K

Whitaker’s eqn. (6.102), on the other hand, gives

NuL = 0.036(0.87)0.43
[
(808,000)0.8 − 9200

]
= 1492

where we have deleted the viscosity correction since the NH3 is gaseous.
This gives a 19% higher value of h.

h = 1492(0.0391)
1.6

= 36.5 W/m2K

Finally, using Churchill’s formulation, we get φ = 7.87 × 105, so
eqn. (6.103) gives NuL = 697 if φum is 107 and 2168 if it is 105.
These values spread over a factor of three and they embrace the val-
ues above. This serves to show how minor system variations can in-
troduce a great deal of uncertainty into a combined laminar–turbulent
system.
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Example 6.10

Compare eqns. (6.101) and (6.102) at high ReL—say, ReL O 107.

Solution. Neglecting the viscosity ratio,

NuL7.100

NuL7.101

= 1.03

Pr0.13


1−

(
Re0.8

trans − 17.95
√

Retrans

)/
Re0.8

L

1− 9200
/
Re0.8

L




In the worst case, Retransition = 500,000 and ReL = 107, this reduces
to

NuL7.100

NuL7.101

= 1.066

Pr0.13

Up to Pr � 3, the disagreement is within±7%. For higher Pr, we should
use Whitaker’s relation, eqn. (6.102), with its broader Pr dependence.

Example 6.11

What is τw in Example 6.9?

Solution. From Reynolds’s analogy, we obtain

Cf = 2StL Pr2/3 = 2NuL
ReL Pr1/3 =

2(1492)
808,000(0.87)1/3

= 0.00387

Therefore,

τw = 1
2
ρu2∞ Cf = 0.4934(15)2

2
(0.00387) = 0.215 N/m2

(If the plate were 1 m wide, this would be a drag force of 0.344 N, or
1.2 oz.)

A word about the analysis of turbulent boundary layers

The preceding discussion has circumvented serious analysis of heat trans-
fer in turbulent flows. Sophisticated methods of analysis are beyond the
scope of this book. In the past, boundary layer heat transfer has been an-
alyzed in many flows (with and without pressure gradients, dp/dx) using
integral methods. However, in recent decades, computational techniques
have largely supplanted these techniques. In boundary layer situations,
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various methods based on turbulent kinetic energy and dissipation, so-
called k-ε methods, are widely-used and have been implemented in a va-
riety of commercial fluid-dynamics codes. These methods are described
in the technical literature and in monographs on turbulence [6.10, 6.11].

We have found our way around analysis by presenting some corre-
lations for common situations. In the next chapter, we deal with more
complicated configurations than the simple plane surface. A few of these
configurations will be amenable to a level of analysis appropriate to a
first course, but for others we shall only be able to present the best data
correlations available.

Problems

6.1 Verify that eqn. (6.13) follows from eqns. (6.11) and (6.12).

6.2 The student with some analytical ability (or some assistance
from the instructor) should complete the algebra between eqns.
(6.16) and (6.20).

6.3 Use a computer to solve eqn. (6.18) subject to b.c.’s (6.20). To
do this you need all three b.c.’s at η = 0, but one is presently
at η = ∞. There are three ways to get around this:

• Start out by guessing a value of ∂f ′/∂η at η = 0—say,
∂f ′/∂η = 1. When η is large—say, 6 or 10—∂f ′/∂η will
asymptotically approach a constant. If the constant > 1,
go back and guess a lower value of ∂f ′/∂η, or vice versa,
until the constant converges on unity. (There are many
ways to automate the successive guesses.)

• The correct value of df ′/dη is approximately 0.33206 at
η = 0. You might cheat and begin with it.

• There exists a clever way to map df/dη = 1 at η = ∞ back
into the origin. (Consult your instructor.)

6.4 Verify that the Blasius solution (Table 6.1) satisfies eqn. (6.25).
To do this, carry out the required integration.

6.5 Verify eqn. (6.30).

6.6 Obtain the counterpart of eqn. (6.32) based on the velocity pro-
file given by the integral method.
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6.7 Assume a laminar b.l. velocity profile of the simple formu/u∞ =
y/δ and calculate δ and Cf on the basis of this very rough es-
timate, using the momentum integral method. How accurate is
each? [Cf is about 13% low.]

6.8 In a certain flow of water at 40◦C over a flat plate δ = 0.005
√
x,

for δ and x measured in meters. Plot to scale on a common
graph (with an appropriately expanded y-scale):

• δ and δt for the water.

• δ and δt for air at the same temperature and velocity.

6.9 A thin film of liquid with a constant thickness, δ0, falls down
a vertical plate. It has reached its terminal velocity so that vis-
cous shear and weight are in balance and the flow is steady. The
b.l. equation for such a flow is the same as eqn. (6.13), except
that it has a gravity force in it. Thus,

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ
dp
dx

+ g + ν
∂2u
∂y2

where x increases in the downward direction and y is normal
to the wall. Assume that the surrounding air density � 0, so
there is no hydrostatic pressure gradient in the surrounding
air. Then:

• Simplify the equation to describe this situation.

• Write the b.c.’s for the equation, neglecting any air drag
on the film.

• Solve for the velocity distribution in the film, assuming
that you know δ0 (cf. Chap. 8).

(This solution is the starting point in the study of many process
heat and mass transfer problems.)

6.10 Develop an equation for NuL that is valid over the entire range
of Pr for a laminar b.l. over a flat, isothermal surface.

6.11 Use an integral method to develop a prediction of Nux for a
laminar b.l. over a uniform heat flux surface. Compare your
result with eqn. (6.71). What is the temperature difference at
the leading edge of the surface?
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6.12 Verify eqn. (6.101).

6.13 It is known from flow measurements that the transition to tur-
bulence occurs when the Reynolds number based on mean ve-
locity and diameter exceeds 4000 in a certain pipe. Use the fact
that the laminar boundary layer on a flat plate grows according
to the relation

δ
x
= 4.92

√
ν

umaxx

to find an equivalent value for the Reynolds number of transi-
tion based on distance from the leading edge of the plate and
umax. (Note that umax = 2uav during laminar flow in a pipe.)

6.14 Execute the differentiation in eqn. (6.24) with the help of Leib-
nitz’s rule for the differentiation of an integral and show that
the equation preceding it results.

6.15 Liquid at 23◦C flows at 2 m/s over a smooth, sharp-edged, flat
surface 12 cm in length which is kept at 57◦C. Calculate h at the
trailing edge (a) if the fluid is water; (b) if the fluid is glycerin
(h = 346 W/m2K). (c) Compare the drag forces in the two
cases. [There is 23.4 times as much drag in the glycerin.]

6.16 Air at −10◦C flows over a smooth, sharp-edged, almost-flat,
aerodynamic surface at 240 km/hr. The surface is at 10◦C. Find
(a) the approximate location of the laminar turbulent transition;
(b) the overall h for a 2 m chord; (c) h at the trailing edge for a
2 m chord; (d) δ and h at the beginning of the transition region.
[δxt = 0.54 mm.]

6.17 Find h in Example 6.9 using eqn. (6.103) with φum = 107 and
106. Discuss the result.

6.18 Suppose that you had one data point with which to fix φum

in Churchill’s equation for NuL on a flat plate. This value is
h = 32 W/m2K in the system in Example 6.9. Evaluate φum and
then use eqn. (6.103) to predict h if u∞ is increased to 21 m/s.

6.19 Mercury at 25◦C flows at 0.7 m/s over a 4 cm-long flat heater
at 60◦C. Find h, τw , h(x = 0.04 m), and δ(x = 0.04 m).
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6.20 A large plate is at rest in water at 15◦C. The plate is suddenly
translated parallel to itself, at 1.5 m/s. The resulting fluid
movement is not exactly like that in a b.l. because the veloc-
ity profile builds up uniformly, all over, instead of from an
edge. The governing transient momentum equation, Du/Dt =
ν(∂2u/∂y2), takes the form

1
ν
∂u
∂t

= ∂2u
∂y2

Determineu at 0.015 m from the plate for t = 1, 10, and 1000 s.
Do this by first posing the problem fully and then comparing
it with the solution in Section 5.6. [u � 0.003 m/s after 10 s.]

6.21 Notice that, when Pr is large, the velocity b.l. on an isothermal,
flat heater is much larger than δt . The small part of the veloc-
ity b.l. inside the thermal b.l. is approximately u/u∞ = 3

2y/δ =
3
2φ(y/δt). Derive Nux for this case based on this velocity pro-
file.

6.22 Plot the ratio of h(x)laminar to h(x)turbulent against Rex in the
range of Rex that might be either laminar or turbulent. What
does the plot suggest about heat transfer design?

6.23 Water at 7◦C flows at 0.38 m/s across the top of a 0.207 m-long,
thin copper plate. Methanol at 87◦C flows across the bottom of
the same plate, at the same speed but in the opposite direction.
Make the obvious first guess as to the temperature at which to
evaluate physical properties. Then plot the plate temperature
as a function of position. (Do not bother to correct the physical
properties in this problem, but note Problem 6.24.)

6.24 Work Problem 6.23 taking full account of property variations.

6.25 If the wall temperature in Example 6.6 (with a uniform qw =
420 W/m2) were instead fixed at its average value of 76◦C, what
would the average wall heat flux be?

6.26 A cold, 20 mph westerly wind at 20◦F cools a rectangular build-
ing, 35 ft by 35 ft by 22 ft high, with a flat roof. The outer walls
are at 27◦F. Find the heat loss, conservatively assuming that
the east and west faces have the same h as the north, south,
and top faces. Estimate U for the walls.
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6.27 A 2 ft-square slab of mild steel leaves a forging operation 0.25 in.
thick at 1000◦C. It is laid flat on an insulating bed and 27◦C air
is blown over it at 30 m/s. How long will it take to cool to
200◦C. (State your assumptions about property evaluation.)

6.28 Do Problem 6.27 numerically, recalculating properties at suc-
cessive points. If you did Problem 6.27, compare results.

6.29 Plot q against x for the situation described in Example 6.9.

6.30 Consider the plate in Example 6.9. Suppose that instead of
specifying Tw = 200◦C, we specified qw = 3650 W/m2. Plot Tw
against x for this case.

6.31 A thin metal sheet separates air at 44◦C, flowing at 48 m/s,
from water at 4◦C, flowing at 0.2 m/s. Both fluids start at a
leading edge and move in the same direction. Plot Tplate and q
as a function of x up to x = 0.1 m.

6.32 A mixture of 60% glycerin and 40% water flows over a 1-m-long
flat plate. The glycerin is at 20◦C and the plate is at 40◦. A
thermocouple 1 mm above the trailing edge records 35◦C. What
is u∞, and what is u at the thermocouple?

6.33 What is the maximum h that can be achieved in laminar flow
over a 5 m plate, based on data from Table A.3? What physical
circumstances give this result?

6.34 A 17◦C sheet of water, ∆1 m thick and moving at a constant
speed u∞ m/s, impacts a horizontal plate at 45◦, turns, and
flows along it. Develop a dimensionless equation for the thick-
ness ∆2 at a distance L from the point of impact. Assume that
δ ∆2. Evaluate the result for u∞ = 1 m/s, ∆1 = 0.01 m, and
L = 0.1 m, in water at 27◦C.

6.35 A good approximation to the temperature dependence of µ in
gases is given by the Sutherland formula:

µ
µref

=
(
T
Tref

)1.5 Tref + S
T + S

,

where the reference state can be chosen anywhere. Use data for
air at two points to evaluate S for air. Use this value to predict
a third point. (T and Tref are expressed in ◦K.)
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6.36 We have derived a steady-state continuity equation in Section 6.3.
Now derive the time-dependent, compressible, three-dimensional
version of the equation:

∂ρ
∂t
+∇ · (ρ�u) = 0

To do this, paraphrase the development of equation (2.10), re-
quiring that mass be conserved instead of energy.

6.37 Various considerations show that the smallest-scale motions in
a turbulent flow have no preferred spatial orientation at large
enough values of Re. Moreover, these small eddies are respon-
sible for most of the viscous dissipation of kinetic energy. The
dissipation rate, ε(W/kg), may be regarded as given informa-
tion about the small-scale motion, since it is set by the larger-
scale motion. Both ε and ν are governing parameters of the
small-scale motion.

a. Find the characteristic length and velocity scales of the
small-scale motion. These are called theKolmogorov scales
of the flow.

b. Compute Re for the small-scale motion and interpret the
result.

c. The Kolmogorov length scale characterizes the smallest
motions found in a turbulent flow. If ε is 10 W/kg and the
mean free path is 7×10−8 m, show that turbulent motion is
a continuum phenomenon and thus is properly governed
by the equations of this chapter.

d. The temperature outside is 35◦F, but with the wind chill
it’s −15◦F. And you forgot your hat. If you go outdoors
for long, are you in danger of freezing your ears?
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7. Forced convection in a variety of
configurations

The bed was soft enough to suit me. . .But I soon found that there came
such a draught of cold air over me from the sill of the window that this
plan would never do at all, especially as another current from the rickety
door met the one from the window and both together formed a series of
small whirlwinds in the immediate vicinity of the spot where I had thought
to spend the night. Moby Dick, H. Melville

7.1 Introduction

Consider for a moment the fluid flow pattern within a shell-and-tube heat
exchanger, such as that shown in Fig. 3.5. The shell-pass flow moves up
and down across the tube bundle from one baffle to the next. The flow
around each pipe is determined by the complexities of the one before it,
and the direction of the mean flow relative to each pipe can vary. Yet
the problem of determining the heat transfer in this situation, however
difficult it appears to be, is a task that must be undertaken.

The flow within the tubes of the exchanger is somewhat more tractable,
but it, too, brings with it several problems that do not arise in the flow of
fluids over a flat surface. Heat exchangers thus present a kind of micro-
cosm of internal and external forced convection problems. Other such
problems arise everywhere that energy is delivered, controlled, utilized,
or produced. They arise in the complex flow of water through nuclear
heating elements or in the liquid heating tubes of a solar collector—in
the flow of a cryogenic liquid coolant in certain digital computers or in
the circulation of refrigerant in the spacesuit of a lunar astronaut.

We dealt with the simple configuration of flow over a flat surface in

317
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Chapter 6. This situation has considerable importance in its own right,
and it also reveals a number of analytical methods that apply to other
configurations. Now we wish to undertake a sequence of progressively
harder problems of forced convection heat transfer in more complicated
flow configurations.

Incompressible forced convection heat transfer problems normally
admit an extremely important simplification: the fluid flow problem can
be solved without reference to the temperature distribution in the fluid.
Thus, we can first find the velocity distribution and then put it in the
energy equation as known information and solve for the temperature
distribution. Two things can impede this procedure, however:

• If the fluid properties (especially µ and ρ) vary significantly with
temperature, we cannot predict the velocity without knowing the
temperature, and vice versa. The problems of predicting velocity
and temperature become intertwined and harder to solve. We en-
counter such a situation later in the study of natural convection,
where the fluid is driven by thermally induced density changes.

• Either the fluid flow solution or the temperature solution can, itself,
become prohibitively hard to find. When that happens, we resort to
the correlation of experimental data with the help of dimensional
analysis.

Our aim in this chapter is to present the analysis of a few simple
problems and to show the progression toward increasingly empirical so-
lutions as the problems become progressively more unwieldy. We begin
this undertaking with one of the simplest problems: that of predicting
laminar convection in a pipe.

7.2 Heat transfer to and from laminar flows in pipes

Not many industrial pipe flows are laminar, but laminar heating and cool-
ing does occur in an increasing variety of modern instruments and equip-
ment: micro-electro-mechanical systems (MEMS), laser coolant lines, and
many compact heat exchangers, for example. As in any forced convection
problem, we first describe the flow field. This description will include a
number of ideas that apply to turbulent as well as laminar flow.
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Figure 7.1 The development of a laminar velocity profile in a pipe.

Development of a laminar flow

Figure 7.1 shows the evolution of a laminar velocity profile from the en-
trance of a pipe. Throughout the length of the pipe, the mass flow rate,
ṁ (kg/s), is constant, of course, and the average, or bulk, velocity uav is
also constant:

ṁ =
∫
Ac
ρudAc = ρuavAc (7.1)

where Ac is the cross-sectional area of the pipe. The velocity profile, on
the other hand, changes greatly near the inlet to the pipe. A b.l. builds
up from the front, generally accelerating the otherwise undisturbed core.
The b.l. eventually occupies the entire flow area and defines a velocity pro-
file that changes very little thereafter. We call such a flow fully developed.
A flow is fully developed from the hydrodynamic standpoint when

∂u
∂x

= 0 or v = 0 (7.2)

at each radial location in the cross section. An attribute of a dynamically
fully developed flow is that the streamlines are all parallel to one another.

The concept of a fully developed flow, from the thermal standpoint,
is a little more complicated. We must first understand the notion of the
mixing-cup, or bulk, enthalpy and temperature, ĥb and Tb. The enthalpy
is of interest because we use it in writing the First Law of Thermodynam-
ics when calculating the inflow of thermal energy and flow work to open
control volumes. The bulk enthalpy is an average enthalpy for the fluid
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flowing through a cross section of the pipe:

ṁ ĥb ≡
∫
Ac
ρuĥdAc (7.3)

If we assume that fluid pressure variations in the pipe are too small to
affect the thermodynamic state much (see Sect. 6.3) and if we assume a
constant value of cp, then ĥ = cp(T − Tref) and

ṁ cp (Tb − Tref) =
∫
Ac
ρcpu(T − Tref) dAc (7.4)

or simply

Tb =

∫
Ac
ρcpuT dAc

ṁcp
(7.5)

In words, then,

Tb ≡ rate of flow of enthalpy through a cross section

rate of flow of heat capacity through a cross section

Thus, if the pipe were broken at any x-station and allowed to discharge
into a mixing cup, the enthalpy of the mixed fluid in the cup would equal
the average enthalpy of the fluid flowing through the cross section, and
the temperature of the fluid in the cup would be Tb. This definition of Tb
is perfectly general and applies to either laminar or turbulent flow. For
a circular pipe, with dAc = 2πr dr , eqn. (7.5) becomes

Tb =

∫ R

0
ρcpuT 2πr dr∫ R

0
ρcpu2πr dr

(7.6)

A fully developed flow, from the thermal standpoint, is one for which
the relative shape of the temperature profile does not change with x. We
state this mathematically as

∂
∂x

(
Tw − T
Tw − Tb

)
= 0 (7.7)

where T generally depends on x and r . This means that the profile can
be scaled up or down with Tw − Tb. Of course, a flow must be hydrody-
namically developed if it is to be thermally developed.
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Figure 7.2 The thermal development of flows in tubes with
a uniform wall heat flux and with a uniform wall temperature
(the entrance region).

Figures 7.2 and 7.3 show the development of two flows and their sub-
sequent behavior. The two flows are subjected to either a uniform wall
heat flux or a uniform wall temperature. In Fig. 7.2 we see each flow de-
velop until its temperature profile achieves a shape which, except for a
linear stretching, it will retain thereafter. If we consider a small length of
pipe, dx long with perimeter P , then its surface area is P dx (e.g., 2πRdx
for a circular pipe) and an energy balance on it is1

dQ = qw Pdx = ṁdĥb (7.8)

= ṁcp dTb (7.9)

so that

dTb
dx

= qwP
ṁcp

(7.10)

1Here we make the same approximations as were made in deriving the energy equa-
tion in Sect. 6.3.
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Figure 7.3 The thermal behavior of flows in tubes with a uni-
form wall heat flux and with a uniform temperature (the ther-
mally developed region).

This result is also valid for the bulk temperature in a turbulent flow.

In Fig. 7.3 we see the fully developed variation of the temperature
profile. If the flow is fully developed, the boundary layers are no longer
growing thicker, and we expect that h will become constant. When qw is
constant, then Tw − Tb will be constant in fully developed flow, so that
the temperature profile will retain the same shape while the temperature
rises at a constant rate at all values of r . Thus, at any radial position,

∂T
∂x

= dTb
dx

= qwP
ṁcp

= constant (7.11)

In the uniform wall temperature case, the temperature profile keeps
the same shape, but its amplitude decreases with x, as does qw . The
lower right-hand corner of Fig. 7.3 has been drawn to conform with this
requirement, as expressed in eqn. (7.7).
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The velocity profile in laminar tube flows

The Buckingham pi-theorem tells us that if the hydrodynamic entry length,
xe, required to establish a fully developed velocity profile depends on
uav, µ, ρ, and D in three dimensions (kg, m, and s), then we expect to
find two pi-groups:

xe
D
= fn (ReD)

where ReD ≡ uavD/ν . The matter of entry length is discussed by White
[7.1, Chap. 4], who quotes

xe
D
� 0.03 ReD (7.12)

The constant, 0.03, guarantees that the laminar shear stress on the pipe
wall will be within 5% of the value for fully developed flow when x >
xe. The number 0.05 can be used, instead, if a deviation of just 1.4% is
desired. The thermal entry length, xet , turns out to be different from xe.
We deal with it shortly.

The hydrodynamic entry length for a pipe carrying fluid at speeds
near the transitional Reynolds number (2100) will extend beyond 100 di-
ameters. Since heat transfer in pipes shorter than this is very often im-
portant, we will eventually have to deal with the entry region.

The velocity profile for a fully developed laminar incompressible pipe
flow can be derived from the momentum equation for an axisymmetric
flow. It turns out that the b.l. assumptions all happen to be valid for a
fully developed pipe flow:

• The pressure is constant across any section.

• ∂2u
/
∂x2 is exactly zero.

• The radial velocity is not just small, but it is zero.

• The term ∂u
/
∂x is not just small, but it is zero.

The boundary layer equation for cylindrically symmetrical flows is quite
similar to that for a flat surface, eqn. (6.13):

u
∂u
∂x

+ v
∂u
∂r

= −1
ρ
dp
dx

+ ν
r
∂
∂r

(
r
∂u
∂r

)
(7.13)
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For fully developed flows, we go beyond the b.l. assumptions and set
v and ∂u/∂x equal to zero as well, so eqn. (7.13) becomes

1
r
d
dr

(
r
du
dr

)
= 1
µ
dp
dx

We integrate this twice and get

u =
(

1
4µ

dp
dx

)
r2 + C1 ln r + C2

The two b.c.’s on u express the no-slip (or zero-velocity) condition at the
wall and the fact that u must be symmetrical in r :

u(r = R) = 0 and
du
dr

∣∣∣∣
r=0

= 0

They give C1 = 0 and C2 = (−dp/dx)R2/4µ, so

u = R2

4µ

(
−dp
dx

)[
1−

(
r
R

)2
]

(7.14)

This is the familiar Hagen-Poiseuille2 parabolic velocity profile. We can
identify the lead constant (−dp/dx)R2

/
4µ as the maximum centerline

velocity, umax. In accordance with the conservation of mass (see Prob-
lem 7.1), 2uav = umax, so

u
uav

= 2

[
1−

(
r
R

)2
]

(7.15)

Thermal behavior of a flow with a uniform heat flux at the wall

The b.l. energy equation for a fully developed laminar incompressible
flow, eqn. (6.40), takes the following simple form in a pipe flow where
the radial velocity is equal to zero:

u
∂T
∂x

= α
1
r
∂
∂r

(
r
∂T
∂r

)
(7.16)

2The German scientist G. Hagen showed experimentally howu varied with r , dp/dx,
µ, and R, in 1839. J. Poiseuille (pronounced Pwa-zói or, more precisely, Pwä-z´eē) did
the same thing, almost simultaneously (1840), in France. Poiseuille was a physician
interested in blood flow, and we find today that if medical students know nothing else
about fluid flow, they know “Poiseuille’s law.”
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For a fully developed flow with qw = constant, Tw and Tb increase linearly
with x. In particular, by integrating eqn. (7.10), we find

Tb(x)− Tbin =
∫ x

0

qwP
ṁcp

dx = qwPx
ṁcp

(7.17)

Then, from eqns. (7.11) and (7.1), we get

∂T
∂x

= dTb
dx

= qwP
ṁcp

= qw(2πR)
ρcpuav(πR2)

= 2qwα
uavRk

Using this result and eqn. (7.15) in eqn. (7.16), we obtain

4

[
1−

(
r
R

)2
]
qw
Rk

= 1
r
d
dr

(
r
dT
dr

)
(7.18)

This ordinary d.e. in r can be integrated twice to obtain

T = 4qw
Rk

(
r2

4
− r4

16R2

)
+ C1 ln r + C2 (7.19)

The first b.c. on this equation is the symmetry condition, ∂T/∂r = 0
at r = 0, and it gives C1 = 0. The second b.c. is the definition of the
mixing-cup temperature, eqn. (7.6). Substituting eqn. (7.19) with C1 = 0
into eqn. (7.6) and carrying out the indicated integrations, we get

C2 = Tb − 7
24

qwR
k

so

T − Tb = qwR
k

[(
r
R

)2

− 1
4

(
r
R

)4

− 7
24

]
(7.20)

and at r = R, eqn. (7.20) gives

Tw − Tb = 11
24

qwR
k

= 11
48

qwD
k

(7.21)

so the local NuD for fully developed flow, based on h(x) = qw
/
[Tw(x)−

Tb(x)], is

NuD ≡ qwD
(Tw − Tb)k

= 48
11

= 4.364 (7.22)
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Equation (7.22) is surprisingly simple. Indeed, the fact that there is
only one dimensionless group in it is predictable by dimensional analysis.
In this case the dimensional functional equation is merely

h = fn (D, k)

We exclude∆T , becauseh should be independent of∆T in forced convec-
tion; µ, because the flow is parallel regardless of the viscosity; and ρu2

av,
because there is no influence of momentum in a laminar incompressible
flow that never changes direction. This gives three variables, effectively
in only two dimensions, W/K and m, resulting in just one dimensionless
group, NuD, which must therefore be a constant.

Example 7.1

Water at 20◦C flows through a small-bore tube 1 mm in diameter at
a uniform speed of 0.2 m/s. The flow is fully developed at a point
beyond which a constant heat flux of 6000 W/m2 is imposed. How
much farther down the tube will the water reach 74◦C at its hottest
point?

Solution. As a fairly rough approximation, we evaluate properties
at (74 + 20)/2 = 47◦C: k = 0.6367 W/m·K, α = 1.541 × 10−7, and
ν = 0.556×10−6 m2/s. Therefore, ReD = (0.001 m)(0.2 m/s)/0.556×
10−6 m2/s = 360, and the flow is laminar. Then, noting that T is
greatest at the wall and setting x = L at the point where Twall = 74◦C,
eqn. (7.17) gives:

Tb(x = L) = 20+ qwP
ṁcp

L = 20+ 4qwα
uavDk

L

And eqn. (7.21) gives

74 = Tb(x = L)+ 11
48

qwD
k

= 20+ 4qwα
uavDk

L+ 11
48

qwD
k

so

L
D
=

(
54− 11

48
qwD
k

)
uavk
4qwα

or

L
D
=

[
54− 11

48
6000(0.001)

0.6367

]
0.2(0.6367)

4(6000)1.541(10)−7
= 1785
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so the wall temperature reaches the limiting temperature of 74◦C at

L = 1785(0.001 m) = 1.785 m

While we did not evaluate the thermal entry length here, it may be
shown to be much, much less than 1785 diameters.

In the preceding example, the heat transfer coefficient is actually
rather large

h = NuD
k
D
= 4.364

0.6367
0.001

= 2,778 W/m2K

The high h is a direct result of the small tube diameter, which limits the
thermal boundary layer to a small thickness and keeps the thermal re-
sistance low. This trend leads directly to the notion of a microchannel
heat exchanger. Using small scale fabrication technologies, such as have
been developed in the semiconductor industry, it is possible to create
channels whose characteristic diameter is in the range of 100 µm, result-
ing in heat transfer coefficients in the range of 104 W/m2Kfor water. If,
instead, liquid sodium (k ≈ 80 W/m·K) is used as the working fluid, the
laminar flow heat transfer coefficient is on the order of 106 W/m2K— a
range that is usually associated with boiling processes!

Thermal behavior of the flow in an isothermal pipe

The dimensional analysis that showed NuD = constant for flow with a
uniform heat flux at the wall is unchanged when the pipe wall is isother-
mal. Thus, NuD should still be constant. But this time (see, e.g., [7.2,
Chap. 8]) the constant changes to

NuD = 3.657, Tw = constant (7.23)

for fully developed flow. The behavior of the bulk temperature is dis-
cussed in Sect. 7.4.

The thermal entrance region

The thermal entrance region is of great importance in laminar flow be-
cause the thermally undeveloped region becomes extremely long for higher-
Pr fluids. The entry-length equation (7.12) takes the following form for
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the thermal entry region3, where the velocity profile is assumed to be
fully developed before heat transfer starts at x = 0:

xet
D
� 0.034 ReDPr (7.24)

Thus, the thermal entry length for the flow of cold water (Pr � 10) can be
over 600 diameters in length near the transitional Reynolds number, and
oil flows (Pr on the order of 104) practically never achieve fully developed
temperature profiles.

A complete analysis of the heat transfer rate in the thermal entry re-
gion becomes quite complicated. The reader interested in details should
look at [7.2, Chap. 8]. Dimensional analysis of the entry problem shows
that the local value of h depends on uav, µ, ρ, D, cp, k, and x—eight
variables in m, s, kg, and J

/
K. This means that we should anticipate four

pi-groups:

NuD = fn (ReD,Pr, x/D) (7.25)

In other words, to the already familiar NuD, ReD, and Pr, we add a new
length parameter, x/D. The solution of the constant wall temperature
problem, originally formulated by Graetz in 1885 [7.5] and solved in con-
venient form by Sellars, Tribus, and Klein in 1956 [7.6], includes an ar-
rangement of these dimensionless groups, called the Graetz number:

Graetz number, Gz ≡ ReDPrD
x

(7.26)

Figure 7.4 shows values of NuD ≡ hD/k for both the uniform wall
temperature and uniform wall heat flux cases. The independent variable
in the figure is a dimensionless length equal to 2/Gz. The figure also
presents an average Nusselt number, NuD for the isothermal wall case:

NuD ≡ hD
k
= D

k

(
1
L

∫ L

0
hdx

)
= 1
L

∫ L

0
NuD dx (7.27)

3The Nusselt number will be within 5% of the fully developed value if xet O
0.034 ReDPrD for Tw = constant. The error decreases to 1.4% if the coefficient is raised
from 0.034 to 0.05 [Compare this with eqn. (7.12) and its context.]. For other situations,
the coefficient changes. With qw = constant, it is 0.043 at a 5% error level; when the ve-
locity and temperature profiles develop simultaneously, the coefficient ranges between
about 0.028 and 0.053 depending upon the Prandtl number and the wall boundary con-
dition [7.3, 7.4].
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Figure 7.4 Local and average Nusselt numbers for the ther-
mal entry region in a hydrodynamically developed laminar pipe
flow.

where, since h = q(x)
/
[Tw−Tb(x)], it is not possible to average just q or

∆T . We show how to find the change in Tb using h for an isothermal wall
in Sect. 7.4. For a fixed heat flux, the change in Tb is given by eqn. (7.17),
and a value of h is not needed.

For an isothermal wall, the following curve fits are available for the
Nusselt number in thermally developing flow [7.3]:

NuD = 3.657+ 0.0018 Gz1/3(
0.04+ Gz−2/3)2 (7.28)

NuD = 3.657+ 0.0668 Gz1/3

0.04+ Gz−2/3 (7.29)

The error is less than 14% for Gz > 1000 and less than 7% for Gz < 1000.
For fixed qw , a more complicated formula reproduces the exact result
for local Nusselt number to within 1%:

NuD =




1.302 Gz1/3 − 1 for 2× 104 ≤ Gz

1.302 Gz1/3 − 0.5 for 667 ≤ Gz ≤ 2× 104

4.364+ 0.263 Gz0.506 e−41/Gz for 0 ≤ Gz ≤ 667

(7.30)
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Example 7.2

A fully developed flow of air at 27◦C moves at 2 m/s in a 1 cm I.D. pipe.
An electric resistance heater surrounds the last 20 cm of the pipe and
supplies a constant heat flux to bring the air out at Tb = 40◦C. What
power input is needed to do this? What will be the wall temperature
at the exit?

Solution. This is a case in which the wall heat flux is uniform along
the pipe. We first must compute Gz20 cm, evaluating properties at
(27+ 40)

/
2 � 34◦C.

Gz20 cm = ReDPrD
x

=
(2 m/s)(0.01 m)
16.4× 10−6 m2/s

(0.711)(0.01 m)

0.2 m
= 43.38

From eqn. 7.30, we compute NuD = 5.05, so

Twexit − Tb = qwD
5.05k

Notice that we still have two unknowns, qw and Tw . The bulk
temperature is specified as 40◦C, and qw is obtained from this number
by a simple energy balance:

qw(2πRx) = ρcpuav(Tb − Tentry)πR2

so

qw = 1.159
kg
m3

· 1004
J

kg·K · 2
m
s
· (40− 27)◦C · R

2x︸︷︷︸
1/80

= 378 W/m2

Then

Twexit = 40◦C+ (378 W/m2)(0.01 m)
5.05(0.0266 W/m·K) = 68.1◦C

7.3 Turbulent pipe flow

Turbulent entry length

The entry lengths xe and xet are generally shorter in turbulent flow than
they are in laminar flow. However, xet depends on both Re and Pr in a
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Table 7.1 Thermal entry lengths for which NuD will be no
more than 10% above its fully developed value in turbulent flow

Pr ReD xet/D

0.01 200,000 28

0.01 100,000 20

0.01 50,000 12

0.7 200,000 7

0.7 100,000 7

0.7 50,000 7

10.0 100,000 O(1)

complicated way. Table 7.1 gives the thermal entry length for various
values of Pr and ReD, based on a maximum of 10% error in NuD.

Here we see that xet is very strongly dependent on Pr and influenced
rather less by ReD. Notice, too, that xet decreases with Pr in turbulent
flow while it increases in laminar flow.

Only liquid metal flows give fairly long thermal entry regimes, and
they require a separate discussion because of certain problems that emerge
at low Pr’s.

The discussion that follows deals almost entirely with fully developed
turbulent pipe flows.

Illustrative experiment

Figure 7.5 shows average heat transfer data given by Kreith [7.7, Chap. 8]
for air flowing in a 1 in. I.D. isothermal pipe 60 in. in length. Let us see
how these data compare with what we know about pipe flows thus far.

The data are plotted for a single Prandtl number on NuD vs. ReD
coordinates. This format is consistent with eqn. (7.25) in the fully devel-
oped range, but the actual pipe incorporates a significant entry region.
Therefore, the data will reflect entry behavior.

For laminar flow, NuD � 3.66 at ReD = 750. This is the correct value
for an isothermal pipe. However, the pipe is too short for flow to be fully
developed over much, if any, of its length. Therefore NuD is not constant
in the laminar range. The rate of rise of NuD with ReD becomes very great
in the transitional range, which lies between ReD = 2100 and about 5000
in this case. Above ReD � 5000, the flow is turbulent and it turns out
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Figure 7.5 Heat transfer to air flowing in
a 1 in. I.D., 60 in. long pipe (after
Kreith [7.7]).

that NuD � Re0.8
D .

The Reynolds analogy and heat transfer

The form of the Reynolds analogy appropriate to fully developed turbu-
lent flow in a pipe can be derived from eqn. (6.96) in the form

Stx = h
ρcpu∞

= Cf (x)
/
2

1+ 13
(

Pr2/3 − 1
)√

Cf (x)
/
2

(6.96)

where h, in a pipe flow, is defined as qw/(Tw − Tb). We merely replace
u∞ with uav and Cf (x) with a constant value of the friction coefficient,
Cf , for fully developed pipe flow to get

St = h
ρcpuav

= Cf
/
2

1+ 13
(

Pr2/3 − 1
)√

Cf
/
2

(7.31)

This should not be used at very low Pr’s, but it can be used in either
uniform qw or uniform Tw situations. It applies only to smooth walls.

The frictional resistance to flow in a pipe is normally expressed in
terms of the Darcy-Weisbach friction factor, f [recall eqn. (3.24)]:

f ≡ head loss

pipe length
D

u2
av

2

= ∆p
L
D
ρu2

av

2

(7.32)
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where ∆p is the pressure drop in a pipe of length L. However,

τw = frictional force on liquid
surface area of pipe

=
∆p

[
(π/4)D2

]
πDL

= ∆pD
4L

so

f = τw
ρu2

av/8
= 4Cf (7.33)

Substituting eqn. (7.33) in eqn. (7.31) and rearranging the result, we
obtain, for fully developed flow,

NuD =
(
f
/
8
)
ReD Pr

1+ 13
(

Pr2/3 − 1
)√

f
/
8

(7.34)

The friction factor is given graphically in Fig. 7.6 as a function of ReD and
the relative roughness, ε/D, where ε is the root-mean-square roughness
of the pipe wall. Equation (7.34) can be used directly along with Fig. 7.6
to calculate the Nusselt number, but only for smooth-walled pipes.

Historical formulations. A number of early formulations for the Nus-
selt number in turbulent pipe flow were based on Reynolds analogy in
the form of eqn. (6.95), which for a pipe flow becomes

St Pr2/3 = Cf
2
= f

8
(7.35)

or

NuD = ReD Pr1/3 (f/8) (7.36)

For smooth pipes, the curve ε/D = 0 in Fig. 7.6 is approximately given
by this equation:

f
4
= Cf = 0.046

Re0.2
D

(7.37)

in the range 20,000 < ReD < 300,000, so eqn. (7.36) becomes

NuD = 0.023 Pr1/3 Re0.8
D

for smooth pipes. This result was given by Colburn [7.8] in 1933. Actu-
ally, it is quite similar to an earlier result developed by Dittus and Boelter
in 1930 (see [7.9, pg. 552]) for smooth pipes.

NuD = 0.0243 Pr0.4 Re0.8
D (7.38)
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These equations are intended for reasonably low temperature differ-
ences under which properties can be evaluated at a mean temperature
(Tb + Tw)/2. In 1936, Sieder and Tate [7.10] provided a correlation that
suggests that when |Tw−Tb| is large enough to cause serious changes of
µ, the Colburn equation can be modified in the following way for liquids:

NuD = 0.023 Re0.8
D Pr1/3

(
µb
µw

)0.14

(7.39)

where all properties are evaluated at the local bulk temperature except
µw , which is the viscosity evaluated at the wall temperature.

These early relations proved to be reasonably accurate. They gave
maximum errors of +25% and −40% in the range 0.67 B Pr < 100 and
usually were considerably more accurate than this. However, subsequent
research has provided a great many more data, and better theoretical and
physical understanding of how to represent them accurately. During the
1950s and 1960s, B. S. Petukhov and his co-workers at the Moscow Insti-
tute for High Temperature developed a vastly improved description of
forced convection heat transfer in pipes. Much of this work is described
in a 1970 survey article by Petukhov [7.11].

Modern formulations. Petukhov recommends the following equation,
which is built from eqn. (7.34), for the local Nusselt number in fully de-
veloped flow in smooth pipes where all properties are evaluated at Tb.

NuD = (f/8) ReD Pr

1.07+ 12.7
√
f/8

(
Pr2/3 − 1

) (7.40)

where

104 < ReD < 5× 106

0.5 < Pr < 200 for 6% accuracy

200 B Pr < 2000 for 10% accuracy

and where the friction factor for smooth pipes is given by

f = 1(
1.82 log10 ReD − 1.64

)2 (7.41)
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Gnielinski [7.12] later showed that the range of validity could be extended
down to the transition Reynolds number by making a small adjustment
to eqn. (7.40):

NuD = (f/8) (ReD − 1000) Pr

1+ 12.7
√
f/8

(
Pr2/3 − 1

) (7.42)

for 2300 ≤ ReD ≤ 5× 106.

Variations in physical properties. The effect of variable physical prop-
erties is dealt with differently for liquids and gases. In both cases, the
Nusselt number is first calculated with all properties evaluated at Tb. For
liquids, one then corrects by multiplying with a viscosity ratio, 0.025 ≤
(µb/µw) ≤ 12.5 [7.11],

NuD = NuD
∣∣∣
Tb

(
µb
µw

)n
where n =


0.11 for Tw > Tb

0.25 for Tw < Tb
(7.43)

For gases a ratio of temperatures in kelvins is used, with 0.27 ≤ (Tb/Tw) ≤
2.7,

NuD = NuD
∣∣∣
Tb

(
Tb
Tw

)n
where n =


0.47 for Tw > Tb

0.36 for Tw < Tb
(7.44)

After eqn. (7.41) is used to calculate NuD, it should also be corrected
for the effect of variable viscosity. For liquids, with 0.5 ≤ (µb/µw) ≤ 3

f = f
∣∣∣
Tb
×K where K =



(7− µb/µw)/6 for Tw > Tb

(µb/µw)−0.24 for Tw < Tb
(7.45)

For gases, with 0.27 ≤ (Tb/Tw) ≤ 2.7

f = f
∣∣∣
Tb

(
Tb
Tw

)m
where m =


0.52 for Tw > Tb

0.38 for Tw < Tb
(7.46)

Example 7.3

A 21.5 kg/s flow of water is dynamically and thermally developed in
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a 12 cm I.D. pipe. The pipe is held at 90◦C and ε/D = 0. Find h and
f where the bulk temperature of the fluid has reached 50◦C.

Solution.

uav = ṁ
ρAc

= 21.5
977π(0.06)2

= 1.946 m/s

so

ReD = uavD
ν

= 1.946(0.12)
4.07× 10−7

= 573,700

and

Pr = 2.47,
µb
µw

= 5.38× 10−4

3.10× 10−4
= 1.74

From eqn. (7.41), f = 0.0128 at Tb, and since Tw > Tb, n = 0.11 in
eqn. (7.43). Thus, with eqn. (7.40) we have

NuD = (0.0128/8)(5.74× 105)(2.47)
1.07+ 12.7

√
0.0128/8

(
2.472/3 − 1

)(1.74)0.11 = 1617

or

h = 1831
k
D
= 1617

0.661
0.12

= 8,907 W/m2K

The corrected friction factor, with eqn. (7.45), is

f = (0.0128) (7− 1.74)/6 = 0.0122

Heat transfer to fully developed liquid-metal flows in tubes

A dimensional analysis of the forced convection flow of a liquid metal
over a flat surface [recall eqn. (6.60) et seq.] showed that

Nu = fn(Pe) (7.47)

because viscous influences were confined to a region very close to the
wall. Thus, the thermal b.l., which extends far beyond δ, is hardly influ-
enced by the dynamic b.l. or by viscosity. During heat transfer to liquid
metals in pipes, the same thing occurs as is illustrated in Fig. 7.7. The re-
gion of thermal influence extends far beyond the laminar sublayer, when
Pr  1, and the temperature profile is not influenced by the sublayer.
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Figure 7.7 Velocity and temperature profiles during fully de-
veloped turbulent flow in a pipe.

Conversely, if Pr � 1, the temperature profile is largely shaped within
the laminar sublayer. At high or even moderate Pr’s, ν is therefore very
important, but at low Pr’s it vanishes from the functional equation. Equa-
tion (7.47) thus applies to pipe flows as well as to flow over a flat surface.

Numerous measured values of NuD for liquid metals flowing in pipes
with a constant wall heat flux, qw , were assembled by Lubarsky and Kauf-
man [7.13]. They are included in Fig. 7.8. It is clear that while most of the
data correlate fairly well on NuD vs. Pe coordinates, certain sets of data
are badly scattered. This occurs in part because liquid metal experiments
are hard to carry out. Temperature differences are small and must often
be measured at high temperatures. Some of the very low data might pos-
sibly result from a failure of the metals to wet the inner surface of the
pipe.

Another problem that besets liquid metal heat transfer measurements
is the very great difficulty involved in keeping such liquids pure. Most
impurities tend to result in lower values of h. Thus, most of the Nus-
selt numbers in Fig. 7.8 have probably been lowered by impurities in the
liquids; the few high values are probably the more correct ones for pure
liquids.

There is a body of theory for turbulent liquid metal heat transfer that
yields a prediction of the form

NuD = C1 + C2 Pe0.8
D (7.48)

where the Péclét number is defined as PeD = uavD/α. The constants are
normally in the ranges 2 B C1 B 7 and 0.0185 B C2 B 0.386 according
to the test circumstances. Using the few reliable data sets available for
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Figure 7.8 Comparison of measured and predicted Nusselt
numbers for liquid metals heated in long tubes with uniform
wall heat flux, qw . (See NACA TN 336, 1955, for details and
data source references.)

uniform wall temperature conditions, Reed [7.14] recommends

NuD = 3.3+ 0.02 Pe0.8
D (7.49)

(Earlier work by Seban and Shimazaki [7.15] had suggested C1 = 4.8 and
C2 = 0.025.) For uniform wall heat flux, many more data are available,
and Lyon [7.16] recommends the following equation, shown in Fig. 7.8:

NuD = 7+ 0.025 Pe0.8
D (7.50)

In both these equations, properties should be evaluated at the average
of the inlet and outlet bulk temperatures and the pipe flow should have
L/D > 60 and PeD > 100. For lower PeD, axial heat conduction in the
liquid metal may become significant.

Although eqns. (7.49) and (7.50) are probably correct for pure liquids,
we cannot overlook the fact that the liquid metals in actual use are seldom
pure. Lubarsky and Kaufman [7.13] put the following line through the
bulk of the data in Fig. 7.8:

NuD = 0.625 Pe0.4
D (7.51)
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The use of eqn. (7.51) for qw = constant is far less optimistic than the
use of eqn. (7.50). It should probably be used if it is safer to err on the
low side.

7.4 Heat transfer surface viewed as a heat exchanger

Let us reconsider the problem of a fluid flowing through a pipe with a
uniform wall temperature. By now we can predict h for a pretty wide
range of conditions. Suppose that we need to know the net heat transfer
to a pipe of known length once h is known. This problem is complicated
by the fact that the bulk temperature, Tb, is varying along its length.

However, we need only recognize that such a section of pipe is a heat
exchanger whose overall heat transfer coefficient, U (between the wall
and the bulk), is just h. Thus, if we wish to know how much pipe surface
area is needed to raise the bulk temperature from Tbin to Tbout , we can
calculate it as follows:

Q = (ṁcp)b
(
Tbout − Tbin

) = hA(LMTD)

or

A = (ṁcp)b
(
Tbout − Tbin

)
h

ln

(
Tbout − Tw
Tbin − Tw

)
(
Tbout − Tw

)− (
Tbin − Tw

) (7.52)

By the same token, heat transfer in a duct can be analyzed with the
effectiveness method (Sect. 3.3) if the existing fluid temperature is un-
known. Suppose that we do not know Tbout in the example above. Then
we can write an energy balance at any cross section, as we did in eqn. (7.8):

dQ = qwP dx = hP (Tw − Tb) dx = ṁcP dTb

Integration can be done from Tb(x = 0) = Tbin to Tb(x = L) = Tbout

∫ L

0

hP
ṁcp

dx = −
∫ Tbout

Tbin

d(Tw − Tb)
(Tw − Tb)

P
ṁcp

∫ L

0
hdx = − ln

(
Tw − Tbout

Tw − Tbin

)
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We recognize in this the definition of h from eqn. (7.27). Hence,

hPL
ṁcp

= − ln

(
Tw − Tbout

Tw − Tbin

)

which can be rearranged as

Tbout − Tbin

Tw − Tbin

= 1− exp

(
−hPL
ṁcp

)
(7.53)

This equation can be used in either laminar or turbulent flow to com-
pute the variation of bulk temperature if Tbout is replaced by Tb(x), L is
replaced by x, and h is adjusted accordingly.

The left-hand side of eqn. (7.53) is the heat exchanger effectiveness.
On the right-hand side we replace U with h; we note that PL = A, the
exchanger surface area; and we write Cmin = ṁcp. Since Tw is uniform,
the stream that it represents must have a very large capacity rate, so that
Cmin/Cmax = 0. Under these substitutions, we identify the argument of
the exponential as NTU = UA/Cmin, and eqn. (7.53) becomes

ε = 1− exp (−NTU) (7.54)

which we could have obtained directly, from either eqn. (3.20) or (3.21),
by setting Cmin/Cmax = 0. A heat exchanger for which one stream is
isothermal, so that Cmin/Cmax = 0, is sometimes called a single-stream
heat exchanger.

Equation 7.53 applies to ducts of any cross-sectional shape. We can
cast it in terms of the hydraulic diameter, Dh = 4Ac/P , by substituting
ṁ = ρuavAc :

Tbout − Tbin

Tw − Tbin

= 1− exp

(
− hPL
ρuavcpAc

)

= 1− exp

(
− h
ρuavcp

4L
Dh

)
(7.55)

For a circular tube, Dh = 4(π/4)D2/(πD) = D. To use eqn. 7.55 for a
non-circular duct, of course, we will need the value of h for a noncircular
duct. We consider this issue in the next section.

Example 7.4

Air at 20◦C is fully thermally developed as it flows in a 1 cm I.D. pipe.
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The average velocity is 0.7 m/s. If the pipe wall is at 60◦C , what is
the temperature 0.25 m farther downstream?

Solution.

ReD = uavD
ν

= (0.7)(0.01)
1.70× 10−5

= 412

The flow is therefore laminar, so

NuD = hD
k
= 3.658

Thus,

h = 3.658(0.0271)
0.01

= 9.91 W/m2K

Then

ε = 1− exp

(
− h
ρcpuav

4L
D

)
= 1− exp

[
− 9.91

1.14(1004)(0.7)
4(0.25)

0.01

]

so that

Tb − 20
60− 20

= 0.698 or Tb = 47.9◦C

7.5 Heat transfer coefficients for noncircular ducts

To appear.

7.6 Heat transfer during cross flow over cylinders

Fluid flow pattern

It will help us to understand the complexity of heat transfer from bodies
in a cross flow if we first look in detail at the fluid flow patterns that occur
in one cross-flow configuration—a cylinder with fluid flowing normal to
it. Figure 7.9 shows how the flow develops as Re ≡ u∞D/ν is increased
from below 5 to near 107. An interesting feature of this evolving flow
pattern is the fairly continuous way in which one flow transition follows
another. The flow field degenerates to greater and greater degrees of



Figure 7.9 Regimes of fluid flow across circular cylinders [7.17].
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Figure 7.10 The Strouhal–Reynolds number relationship for
circular cylinders, as defined by existing data [7.17].

disorder with each successive transition until, rather strangely, it regains
order at the highest values of ReD.

An important reflection of the complexity of the flow field is the
vortex-shedding frequency, fv . Dimensional analysis shows that a di-
mensionless frequency called the Strouhal number, Str, depends on the
Reynolds number of the flow:

Str ≡ fvD
u∞

= fn (ReD) (7.56)

Figure 7.10 defines this relationship experimentally on the basis of about
550 of the best data available (see [7.17]). The Strouhal numbers stay a
little over 0.2 over most of the range of ReD. This means that behind
a given object, the vortex-shedding frequency rises almost linearly with
velocity.

Experiment 7.1

When there is a gentle breeze blowing outdoors, go out and locate a
large tree with a straight trunk or the shaft of a water tower. Wet your
finger and place it in the wake a couple of diameters downstream and
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Figure 7.11 Giedt’s local measurements
of heat transfer around a cylinder in a
normal cross flow of air.

about one radius off center. Estimate the vortex-shedding frequency and
use Str � 0.21 to estimate u∞. Is your value of u∞ reasonable?

Heat transfer

The action of vortex shedding greatly complicates the heat removal pro-
cess. Giedt’s data [7.18] in Fig. 7.11 show how the heat removal changes
as the constantly fluctuating motion of the fluid to the rear of the cylin-
der changes with ReD. Notice, for example, that NuD is near its minimum
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at 110◦ when ReD = 71,000, but it maximizes at the same place when
ReD = 140,000. Direct prediction by the sort of b.l. methods that we
discussed in Chapter 6 is out of the question. However, a great deal can
be done with the data using relations of the form

NuD = fn (ReD,Pr)

The broad study of Churchill and Bernstein [7.19] probably brings
the correlation of heat transfer data from cylinders about as far as it is
possible. For the entire range of the available data, they offer

NuD = 0.3+ 0.62 Re1/2
D Pr1/3[

1+ (0.4/Pr)2/3
]1/4

[
1+

(
ReD

282,000

)5/8
]4/5

(7.57)

This expression underpredicts most of the data by about 20% in the range
20,000 < ReD < 400,000 but is quite good at other Reynolds numbers
above PeD ≡ ReDPr = 0.2. This is evident in Fig. 7.12, where eqn. (7.57)
is compared with data.

Greater accuracy and, in most cases, greater convenience results from
breaking the correlation into component equations:

• Below ReD = 4000, the bracketed term [1 + (ReD/282,000)5/8]4/5

is � 1, so

NuD = 0.3+ 0.62 Re1/2
D Pr1/3[

1+ (0.4/Pr)2/3
]1/4 (7.58)

• Below Pe = 0.2, the Nakai-Okazaki [7.20] relation

NuD = 1

0.8237− ln
(
Pe1/2) (7.59)

should be used.

• In the range 20,000 < ReD < 400,000, somewhat better results are
given by

NuD = 0.3+ 0.62 Re1/2
D Pr1/3[

1+ (0.4/Pr)2/3
]1/4

[
1+

(
ReD

282,000

)1/2
]

(7.60)

than by eqn. (7.57).
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Figure 7.12 Comparison of Churchill and Bernstein’s correla-
tion with data by many workers from several countries for heat
transfer during cross flow over a cylinder. (See [7.19] for data
sources.) Fluids include air, water, and sodium, with both qw
and Tw constant.

All properties in eqns. (7.57) to (7.60) are to be evaluated at a film tem-
perature Tf = (Tw + T∞)

/
2.

Example 7.5

An electric resistance wire heater 0.0001 m in diameter is placed per-
pendicular to an air flow. It holds a temperature of 40◦C in a 20◦C air
flow while it dissipates 17.8 W/m of heat to the flow. How fast is the
air flowing?

Solution. h = (17.8 W/m)
/
[π(0.0001 m)(40 − 20) K] = 2833

W/m2K. Therefore, NuD = 2833(0.0001)/0.0264 = 10.75, where we
have evaluated k = 0.0264 at T = 30◦C. We now want to find the ReD
for which NuD is 10.75. From Fig. 7.12 we see that ReD is around 300
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when the ordinate is on the order of 10. This means that we can solve
eqn. (7.58) to get an accurate value of ReD:

ReD =

(NuD − 0.3)


1+

(
0.4
Pr

)2/3
]1/4/

0.62 Pr1/3




2

but Pr = 0.71, so

ReD =

(10.75− 0.3)


1+

(
0.40
0.71

)2/3
]1/4/

0.62(0.71)1/3




2

= 463

Then

u∞ = ν
D

ReD =
(

1.596× 10−5

10−4

)
463 = 73.9 m/s

The data scatter in ReD is quite small—less than 10%, it would
appear—in Fig. 7.12. Therefore, this method can be used to measure
local velocities with good accuracy. If the device is calibrated, its
accuracy can be improved further. Such an air speed indicator is
called a hot-wire anemometer.

Heat transfer during flow across tube bundles

A rod or tube bundle is an arrangement of parallel cylinders that heat, or
are being heated by, a fluid that might flow normal to them, parallel with
them, or at some angle in between. The flow of coolant through the fuel
elements of all nuclear reactors being used in this country is parallel to
the heating rods. The flow on the shell side of most shell-and-tube heat
exchangers is generally normal to the tube bundles.

Figure 7.13 shows the two basic configurations of a tube bundle in
a cross flow. In one, the tubes are in a line with the flow; in the other,
the tubes are staggered in alternating rows. For either of these configura-
tions, heat transfer data can be correlated reasonably well with power-law
relations of the form

NuD = C RenD Pr1/3 (7.61)

but in which the Reynolds number is based on the maximum velocity,

umax = uav in the narrowest transverse area of the passage
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Figure 7.13 Aligned and staggered tube rows in tube bundles.

Thus, the Nusselt number based on the average heat transfer coefficient
over any particular isothermal tube is

NuD = hD
k

and ReD = umaxD
ν

Žukauskas at the Lithuanian Academy of Sciences Institute in Vilnius
has written a comprehensive review article on tube-bundle heat trans-
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fer [7.21]. In it he summarizes his work and that of other Soviet workers,
together with earlier work from the West. He was able to correlate data
over very large ranges of Pr, ReD, ST/D, and SL/D (see Fig. 7.13) with an
expression of the form

NuD = Pr0.36 (Pr/Prw)n fn (ReD) with n =

0 for gases

1
4 for liquids

(7.62)

where properties are to be evaluated at the local fluid bulk temperature,
except for Prw , which is evaluated at the uniform tube wall temperature,
Tw .

The function fn(ReD) takes the following form for the various circum-
stances of flow and tube configuration:

10 B ReD B 100 :

aligned rows: fn (ReD) = 0.8 Re0.4
D (7.63)

staggered rows: fn (ReD) = 0.9 Re0.4
D (7.64)

100 < ReD < 103 : treat tubes as though they were isolated

103 B ReD B 2× 105 :

aligned rows: fn (ReD) = 0.27 Re0.63
D , ST /SL < 0.7 (7.65)

For ST/SL O 0.7, heat exchange is much less effective.
Therefore, aligned tube bundles are not designed in
this range and no correlation is given.

staggered rows: fn (ReD) = 0.35 (ST /SL)0.2 Re0.6
D ,

ST /SL B 2 (7.66)

fn (ReD) = 0.40 Re0.6
D , ST /SL > 2 (7.67)

ReD > 2× 105 :

aligned rows: fn (ReD) = 0.021 Re0.84
D (7.68)

staggered rows: fn (ReD) = 0.022 Re0.84
D , Pr > 1 (7.69)

NuD = 0.019 Re0.84
D , Pr = 0.7 (7.70)

All of the preceding relations apply to the inner rows of tube bundles.
The heat transfer coefficient is smaller in the rows at the front of a bundle,
facing the oncoming flow. The heat transfer coefficient can be corrected
so that it will apply to any of the front rows using Fig. 7.14.
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Figure 7.14 Correction for the heat
transfer coefficients in the front rows of a
tube bundle [7.21].

Early in this chapter we alluded to the problem of predicting the heat
transfer coefficient during the flow of a fluid at an angle other than 90◦
to the axes of the tubes in a bundle. Žukauskas provides the empirical
corrections in Fig. 7.15 to account for this problem.

The work of Žukauskas does not extend to liquid metals. However,
Kalish and Dwyer [7.22] present the results of an experimental study of
heat transfer to the liquid eutectic mixture of 77.2% potassium and 22.8%
sodium (called NaK). NaK is a fairly popular low-melting-point metallic
coolant which has received a good deal of attention for its potential use in
certain kinds of nuclear reactors. For isothermal tubes in an equilateral
triangular array, as shown in Fig. 7.16, Kalish and Dwyer give

NuD =
(

5.44+ 0.228 Pe0.614
)√√√√C P −D

P

(
sinφ+ sin2 φ

1+ sin2 φ

)
(7.71)

where

Figure 7.15 Correction for the heat
transfer coefficient in flows that are not
perfectly perpendicular to heat exchanger
tubes [7.21].
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Figure 7.16 Geometric correction for
the Kalish-Dwyer equation (7.71).

• φ is the angle between the flow direction and the rod axis.

• P is the “pitch” of the tube array, as shown in Fig. 7.16, and D is
the tube diameter.

• C is the constant given in Fig. 7.16.

• PeD is the Péclét number based on the mean flow velocity through
the narrowest opening between the tubes.

• For the same uniform heat flux around each tube, the constants in
eqn. (7.71) change as follows: 5.44 becomes 4.60; 0.228 becomes
0.193.

7.7 Other configurations

At the outset, we noted that this chapter would move further and further
beyond the reach of analysis in the heat convection problems that it dealt
with. However, we must not forget that even the most completely em-
pirical relations in Section 7.6 were devised by people who were keenly
aware of the theoretical framework into which these relations had to fit.
Notice, for example, that eqn. (7.58) reduces to NuD ∝ √

PeD as Pr be-
comes small. That sort of theoretical requirement did not just pop out
of a data plot. Instead, it was a consideration that led the authors to
select an empirical equation that agreed with theory at low Pr.

Thus, the theoretical considerations in Chapter 6 guide us in correlat-
ing limited data in situations that cannot be analyzed. Such correlations
can be found for all kinds of situations, but all must be viewed critically.
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Many are based on limited data, and many incorporate systematic errors
of one kind or another.

In the face of a heat transfer situation that has to be predicted, one
can often find a correlation of data from similar systems. This might in-
volve flow in or across noncircular ducts; axial flow through tube or rod
bundles; flow over such bluff bodies as spheres, cubes, or cones; or flow
in circular and noncircular annuli. TheHandbook of Heat Transfer [7.23],
the shelf of heat transfer texts in your library, or the journals referred
to by the Engineering Index are among the first places to look for a cor-
relation curve or equation. When you find a correlation, there are many
questions that you should ask yourself:

• Is my case included within the range of dimensionless parameters
upon which the correlation is based, or must I extrapolate to reach
my case?

• What geometric differences exist between the situation represented
in the correlation and the one I am dealing with? (Such elements as
these might differ:

(a) inlet flow conditions;

(b) small but important differences in hardware, mounting brack-
ets, and so on;

(c) minor aspect ratio or other geometric nonsimilarities

• Does the form of the correlating equation that represents the data,
if there is one, have any basis in theory? (If it is only a curve fit to
the existing data, one might be unjustified in using it for more than
interpolation of those data.)

• What nuisance variables might make our systems different? For
example:

(a) surface roughness;

(b) fluid purity;

(c) problems of surface wetting

• To what extend do the data scatter around the correlation line? Are
error limits reported? Can I actually see the data points? (In this
regard, you must notice whether you are looking at a correlation
on linear or logarithmic coordinates. Errors usually appear smaller
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than they really are on logarithmic coordinates. Compare, for ex-
ample, the data of Figs. 8.3 and 8.10.)

• Are the ranges of physical variables large enough to guarantee that
I can rely on the correlation for the full range of dimensionless
groups that it purports to embrace?

• Am I looking at a primary or secondary source (i.e., is this the au-
thor’s original presentation or someone’s report of the original)? If
it is a secondary source, have I been given enough information to
question it?

• Has the correlation been signed by the persons who formulated it?
(If not, why haven’t the authors taken responsibility for the work?)
Has it been subjected to critical review by independent experts in
the field?

Problems

7.1 Prove that in fully developed laminar pipe flow, (−dp/dx)R2
/
4µ

is twice the average velocity in the pipe. To do this, set the mass
flow rate through the pipe equal to (ρuav)(area).

7.2 A flow of air at 27◦C and 1 atm is hydrodynamically fully de-
veloped in a 1 cm I.D. pipe with uav = 2 m/s. Plot (to scale) Tw ,
qw , and Tb as a function of the distance x after Tw is changed
or qw is imposed:

a. In the case for which Tw = 68.4◦C = constant.

b. In the case for which qw = 378 W/m2 = constant.

Indicate xet on your graphs.

7.3 Prove that Cf is 16/ReD in fully developed laminar pipe flow.

7.4 Air at 200◦C flows at 4 m/s over a 3 cm O.D. pipe that is kept
at 240◦C. (a) Find h. (b) If the flow were pressurized water at
200◦C, what velocities would give the same h, the same NuD,
and the same ReD? (c) If someone asked if you could model
the water flow with an air experiment, how would you answer?
[u∞ = 0.0156 m/s for same NuD.]
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7.5 Compare the h value calculated in Example 7.3 with those cal-
culated from the Dittus-Boelter, Colburn, and Sieder-Tate equa-
tions. Comment on the comparison.

7.6 Water at Tblocal = 10◦C flows in a 3 cm I.D. pipe at 1 m/s. The
pipe walls are kept at 70◦C and the flow is fully developed. Eval-
uate h and the local value of dTb/dx at the point of interest.
The relative roughness is 0.001.

7.7 Water at 10◦C flows over a 3 cm O.D. cylinder at 70◦C. The
velocity is 1 m/s. Evaluate h.

7.8 Consider the hot wire anemometer in Example 7.5. Suppose
that 17.8 W/m is the constant heat input, and plot u∞ vs. Twire

over a reasonable range of variables. Must you deal with any
changes in the flow regime over the range of interest?

7.9 Water at 20◦C flows at 2 m/s over a 2 m length of pipe, 10 cm in
diameter, at 60◦C. Compare h for flow normal to the pipe with
that for flow parallel to the pipe. What does the comparison
suggest about baffling in a heat exchanger?

7.10 A thermally fully developed flow of NaK in a 5 cm I.D. pipe
moves at uav = 8 m/s. If Tb = 395◦C and Tw is constant at
403◦C, what is the local heat transfer coefficient? Is the flow
laminar or turbulent?

7.11 Water enters a 7 cm I.D. pipe at 5◦C and moves through it at an
average speed of 0.86 m/s. The pipe wall is kept at 73◦C. Plot
Tb against the position in the pipe until (Tw − Tb)/68 = 0.01.
Neglect the entry problem and consider property variations.

7.12 Air at 20◦C flows over a very large bank of 2 cm O.D. tubes that
are kept at 100◦C. The air approaches at an angle 15◦ off normal
to the tubes. The tube array is staggered, with SL = 3.5 cm and
ST = 2.8 cm. Find h on the first tubes and on the tubes deep in
the array if the air velocity is 4.3 m/s before it enters the array.
[hdeep = 118 W/m2K.]

7.13 Rework Problem 7.11 using a single value of h evaluated at
3(73 − 5)/4 = 51◦C and treating the pipe as a heat exchan-
ger. At what length would you judge that the pipe is no longer
efficient as an exchanger? Explain.
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7.14 Go to the periodical engineering literature in your library. Find
a correlation of heat transfer data. Evaluate the applicability of
the correlation according to the criteria outlined in Section 7.7.

7.15 Water at 24◦C flows at 0.8 m/s in a smooth, 1.5 cm I.D. tube that
is kept at 27◦C. The system is extremely clean and quiet, and the
flow stays laminar until a noisy air compressor is turned on in
the laboratory. Then it suddenly goes turbulent. Calculate the
ratio of the turbulenth to the laminarh. [hturb = 4429 W/m2K.]

7.16 Laboratory observations of heat transfer during the forced flow
of air at 27◦C over a bluff body, 12 cm wide, kept at 77◦C yield
q = 646 W/m2 when the air moves 2 m/s and q = 3590 W/m2

when it moves 18 m/s. In another test, everything else is the
same, but now 17◦C water flowing 0.4 m/s yields 131,000 W/m2.
The correlations in Chapter 7 suggest that, with such limited
data, we can probably create a fairly good correlation in the
form: NuL = CReaPrb. Estimate the constants C , a, and b by
cross-plotting the data on log-log paper.

7.17 Air at 200 psia flows at 12 m/s in an 11 cm I.D. duct. Its bulk
temperature is 40◦C and the pipe wall is at 268◦C. Evaluate h
if ε/D = 0.00006.

7.18 How does h during cross flow over a cylindrical heat vary with
the diameter when ReD is very large?

7.19 Air enters a 0.8 cm I.D. tube at 20◦C with an average velocity
of 0.8 m/s. The tube wall is kept at 40◦C. Plot Tb(x) until it
reaches 39◦C. Use properties evaluated at [(20+ 40)/2]◦C for
the whole problem, but report the local error in h at the end to
get a sense of the error incurred by the simplification.

7.20 Write ReD in terms of ṁ in pipe flow and explain why this rep-
resentation could be particularly useful in dealing with com-
pressible pipe flows.

7.21 NaK at 394◦C flows at 0.57 m/s across a 1.82 m length of
0.036 m O.D. tube. The tube is kept at 404◦C. Find h and the
heat removal rate from the tube.

7.22 Verify the value of h specified in Problem 3.22.



Problems 357

7.23 Check the value of h given in Example 7.3 by using Reynolds’s
analogy directly to calculate it. Which h do you deem to be in
error, and by what percent?

7.24 A homemade heat exchanger consists of a copper plate, 0.5 m
square, with 201.5 cm I.D. copper tubes soldered to it. The
ten tubes on top are evenly spaced across the top and parallel
with two sides. The ten on the bottom are also evenly spaced,
but they run at 90◦ to the top tubes. The exchanger is used to
cool methanol flowing at 0.48 m/s in the tubes from an initial
temperature of 73◦C, using water flowing at 0.91 m/s and en-
tering at 7◦C. What is the temperature of the methanol when it
is mixed in a header on the outlet side? Make a judgement of
the heat exchanger.

7.25 Given that NuD = 12.7 at (2/Gz) = 0.004, evaluate NuD at
(2/Gz) = 0.02 numerically, using Fig. 7.4. Compare the result
with the value you read from the figure.

7.26 Report the maximum percent scatter of data in Fig. 7.12. What
is happening in the fluid flow when the scatter is worst?

7.27 Water at 27◦C flows at 2.2 m/s in a 0.04 m I.D. thin-walled
pipe. Air at 227◦C flows across it at 7.6 m/s. Find the pipe wall
temperature.

7.28 Freshly painted aluminum rods, 0.02 m in diameter, are with-
drawn from a drying oven at 150◦C and cooled in a 3 m/s cross
flow of air at 23◦C. How long will it take to cool them to 50◦C
so that they can be handled?

7.29 At what speed, u∞, must 20◦C air flow across an insulated tube
before the insulation on it will do any good? The tube is at 60◦C
and is 6 mm in diameter. The insulation is 12 mm in diameter,
with k = 0.08 W/m·K. (Notice that we do not ask for the u∞
for which the insulation will do the most harm.)

7.30 Water at 37◦C flows at 3 m/s across at 6 cm O.D. tube that is
held at 97◦C. In a second configuration, 37◦C water flows at an
average velocity of 3 m/s through a bundle of 6 cm O.D. tubes
that are held at 97◦C. The bundle is staggered, with ST/SL = 2.
Compare the heat transfer coefficients for the two situations.
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7.31 It is proposed to cool 64◦C air as it flows, fully developed, in a
1 m length of 8 cm I.D. smooth, thin-walled tubing. The coolant
is Freon 12 flowing, fully developed, in the opposite direction,
in eight smooth 1 cm I.D. tubes equally spaced around the pe-
riphery of the large tube. The Freon enters at−15◦C and is fully
developed over almost the entire length. The average speeds
are 30 m/s for the air and 0.5 m/s for the Freon. Determine
the exiting air temperature, assuming that soldering provides
perfect thermal contact between the entire surface of the small
tubes and the surface of the large tube. Criticize the heat ex-
changer design and propose some design improvement.

7.32 Evaluate NuD using Giedt’s data for air flowing over a cylinder
at ReD = 140,000. Compare your result with the appropriate
correlation and with Fig. 7.12.

7.33 A 25 mph wind blows across a 0.25 in. telephone line. What is
the pitch of the hum that it emits?

7.34 A large Nichrome V slab, 0.2 m thick, has two parallel 1 cm I.D.
holes drilled through it. Their centers are 8 cm apart. One
carries liquid CO2 at 1.2 m/s from a −13◦C reservoir below.
The other carries methanol at 1.9 m/s from a 47◦C reservoir
above. Take account of the intervening Nichrome and compute
the heat transfer. Need we worry about the CO2 being warmed
up by the methanol?

7.35 Consider the situation described in Problem 4.38 but suppose
that you do not know h. Suppose, instead, that you know there
is a 10 m/s cross flow of 27◦C air over the rod. Then rework
the problem.

7.36 A liquid whose properties are not known flows across a 40 cm
O.D. tube at 20 m/s. The measured heat transfer coefficient is
8000 W/m2K. We can be fairly confident that ReD is very large
indeed. What would h be if D were 53 cm? What would h be if
u∞ were 28 m/s?

7.37 Water flows at 4 m/s, at a temperature of 100◦C, in a 6 cm I.D.
thin-walled tube with a 2 cm layer of 85% magnesia insulation
on it. The outside heat transfer coefficient is 6 W/m2K, and the
outside temperature is 20◦C. Find: (a) U based on the inside
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area, (b) Q W/m, and (c) the temperature on either side of the
insulation.

7.38 Glycerin is added to water in a mixing tank at 20◦C. The mixture
discharges through a 4 m length of 0.04 m I.D. tubing under
a constant 3 m head. Plot the discharge rate in m3/hr as a
function of composition.

7.39 Plot h as a function of composition for the discharge pipe in
Problem 7.38. Assume a small temperature difference.

7.40 Rework Problem 5.40 without assuming the Bi number to be
very large.

7.41 Water enters a 0.5 cm I.D. pipe at 24◦C. The pipe walls are held
at 30◦C. Plot Tb against distance from entry if uav is 0.27 m/s,
neglecting entry behavior in your calculation. (Indicate the en-
try region on your graph, however.)

7.42 Devise a numerical method to find the velocity distribution and
friction factor for laminar flow in a square duct of side length
a. Set up a square grid of size N by N and solve the difference
equations by hand forN = 2, 3, and 4. Hint : First show that the
velocity distribution is given by the solution to the equation

∂2u
∂x2 +

∂2u
∂y2 = 1

where u = 0 on the sides of the square and we define u =
u
/
[(a2/µ)(dp/dz)], x = (x/a), and y = (y/a). Then show

that the friction factor, f [eqn. (7.33)], is given by

f = − 2
ρuava
µ

@
udxdy

Note that the area integral can be evaluated as
∑
u/N2.
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8. Natural convection in single-
phase fluids and during film
condensation

There is a natural place for everything to seek, as:
Heavy things go downward, fire upward, and rivers to the sea.

The Anatomy of Melancholy, R. Burton, 1621

8.1 Scope

The remaining convection mechanisms that we deal with are to a large
degree gravity-driven. Unlike forced convection, in which the driving
force is external to the fluid, these so-called natural convection processes
are driven by body forces exerted directly within the fluid as the result
of heating or cooling. Two such mechanisms that are rather alike are:

• Natural convection. When we speak of natural convection without
any qualifying words, we mean natural convection in a single-phase
fluid.

• Film condensation. This natural convection process has much in
common with single-phase natural convection.

We therefore deal with both mechanisms in this chapter. The govern-
ing equations are developed side by side in two brief opening sections.
Then each mechanism is developed independently in Sections 8.3 and
8.4 and in Section 8.5, respectively.

Chapter 9 deals with other natural convection heat transfer processes
that involve phase change—for example:

363
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• Nucleate boiling. This heat transfer process is highly disordered as
opposed to the processes described in Chapter 8.

• Film boiling. This is so similar to film condensation that it is usually
treated by simply modifying film condensation predictions.

• Dropwise condensation. This bears some similarity to nucleate boil-
ing.

8.2 The nature of the problems of film condensation
and of natural convection

Description

The natural convection problem is sketched in its simplest form on the
left-hand side of Fig. 8.1. Here we see a vertical isothermal plate that
cools the fluid adjacent to it. The cooled fluid sinks downward to form a
b.l. The figure would be inverted if the plate were warmer than the fluid
next to it. Then the fluid would buoy upward.

On the right-hand side of Fig. 8.1 is the corresponding film conden-
sation problem in its simplest form. An isothermal vertical plate cools
an adjacent vapor, which condenses and forms a liquid film on the wall.1

The film is normally very thin and it flows off, rather like a b.l., as the
figure suggests. While natural convection can carry fluid either upward
or downward, a condensate film can only move downward. The temper-
ature in the film rises from Tw at the cool wall to Tsat at the outer edge
of the film.

In both problems, but particularly in film condensation, the b.l. and
the film are normally thin enough to accommodate the b.l. assumptions
[recall the discussion following eqn. (6.13)]. A second idiosyncrasy of
both problems is that δ and δt are closely related. In the condensing
film they are equal, since the edge of the condensate film forms the edge
of both b.l.’s. In natural convection, δ and δt are approximately equal
when Pr is on the order of unity or less, because all cooled (or heated)
fluid must buoy downward (or upward). When Pr is large, the cooled (or
heated) fluid will fall (or rise) and, although it is all very close to the wall,
this fluid, with its high viscosity, will also drag unheated liquid with it.

1It might instead condense into individual droplets, which roll of without forming
into a film. This process, called dropwise condensation, is dealt with in Section 9.10.
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Figure 8.1 The convective boundary layers for natural con-
vection and film condensation. In both sketches, but particu-
larly in that for film condensation, the y-coordinate has been
stretched.

In this case, δ can exceed δt . We deal with cases for which δ � δt in the
subsequent analysis.

Governing equations

To describe laminar film condensation and laminar natural convection,
we must add a gravity term to the momentum equation. The dimensions
of the terms in the momentum equation should be examined before we
do this. Equation (6.13) can be written as(

u
∂u
∂x

+ v
∂u
∂y

)
m
s2︸ ︷︷ ︸

= kg·m
kg·s2 = N

kg

= −1
ρ
dp
dx

m3

kg
N

m2 ·m︸ ︷︷ ︸
= N

kg

+ ν
∂2u
∂y2

m2

s
m

s ·m2︸ ︷︷ ︸
= m

s2 = N
kg

where ∂p/∂x � dp/dx in the b.l. and where µ � constant. Thus, every
term in the equation has units of acceleration or (equivalently) force per
unit mass. The component of gravity in the x-direction therefore enters
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the momentum balance as (+g). This is because x and g point in the
same direction. Gravity would enter as −g if it acted opposite the x-
direction.

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ
dp
dx

+ g + ν
∂2u
∂y2

(8.1)

In the two problems at hand, the pressure gradient is the hydrostatic
gradient outside the b.l. Thus,

dp
dx

= ρ∞g︸ ︷︷ ︸
natural

convection

dp
dx

= ρgg︸ ︷︷ ︸
film

condensation

(8.2)

where ρ∞ is the density of the undisturbed fluid and ρg (and ρf below)
are the saturated vapor and liquid densities. Equation (8.1) then becomes

u
∂u
∂x

+ v
∂u
∂y

=
(

1− ρ∞
ρ

)
g + ν

∂2u
∂y2

for natural convection (8.3)

u
∂u
∂x

+ v
∂u
∂y

=
(

1− ρg
ρf

)
g + ν

∂2u
∂y2

for film condensation (8.4)

Two boundary conditions, which apply to both problems, are

u
(
y = 0

) = 0 the no-slip condition

v
(
y = 0

) = 0 no flow into the wall

}
(8.5a)

The third b.c. is different for the film condensation and natural convec-
tion problems:

∂u
∂y

∣∣∣∣∣
y=δ

= 0
condensation:
no shear at the edge of the film

u
(
y = δ

) = 0 natural convection:
undisturbed fluid outside the b.l.




(8.5b)

The energy equation for either of the two cases is eqn. (6.40):

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

We leave the identification of the b.c.’s for temperature until later.
The crucial thing we must recognize about the momentum equation

at the moment is that it is coupled to the energy equation. Let us consider
how that occurs:
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In natural convection: The velocity, u, is driven by buoyancy, which is
reflected in the term (1−ρ∞/ρ)g in the momentum equation. The
density, ρ = ρ(T), varies with T , so it is impossible to solve the
momentum and energy equations independently of one another.

In film condensation: The third boundary condition (8.5b) for the mo-
mentum equation involves the film thickness, δ. But to calculate δ
we must make an energy balance on the film to find out how much
latent heat—and thus how much condensate—it has absorbed. This
will bring (Tsat−Tw) into the solution of the momentum equation.

Recall that the boundary layer on a flat surface, during forced convec-
tion, was easy to analyze because the momentum equation could be
solved completely before any consideration of the energy equation was
attempted. We do not have that advantage in predicting natural convec-
tion or film condensation.

8.3 Laminar natural convection on a vertical isother-
mal surface

Dimensional analysis and experimental data

Before we attempt a dimensional analysis of the natural convection prob-
lem, let us simplify the buoyancy term, (ρ − ρ∞)g

/
ρ, in the momentum

equation (8.3). The equation was derived for incompressible flow, but we
modified it by admitting a small variation of density with temperature in
this term only. Now we wish to eliminate (ρ − ρ∞) in favor of (T − T∞)
with the help of the coefficient of thermal expansion, β:

β ≡ 1
v
∂v
∂T

∣∣∣∣
p
= −1

ρ
∂ρ
∂T

∣∣∣∣
p
� −1

ρ
ρ − ρ∞
T − T∞

= −
(
1− ρ∞

/
ρ
)

T − T∞
(8.6)

where v designates the specific volume here, not a velocity component.
Figure 8.2 shows natural convection from a vertical surface that is

hotter than its surroundings. In either this case or on the cold plate
shown in Fig. 8.1, we replace (1 − ρ∞/ρ)g with −gβ(T − T∞). The sign
(see Fig. 8.2) is the same in either case. Then

u
∂u
∂x

+ v
∂u
∂y

= −gβ(T − T∞)+ ν
∂2u
∂y2

(8.7)
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Figure 8.2 Natural convection from a
vertical heated plate.

where the minus sign corresponds to plate orientation in Fig. 8.1a. This
conveniently removes ρ from the equation and makes the coupling of
the momentum and energy equations very clear.

The functional equation for the heat transfer coefficient, h, in natural
convection is therefore (cf. Section 6.4)

h or h = fn
(
k, |Tw − T∞| , x or L, ν,α,g, β

)
where L is a length that must be specified for a given problem. Notice that
while h was assumed to be independent of ∆T in the forced convection
problem (Section 6.4), the explicit appearance of (T − T∞) in eqn. (8.7)
suggests that we cannot make that assumption here. There are thus eight
variables in W, m, s, and ◦C (where we again regard J as a unit independent
of N and m); so we look for 8−4 = 4 pi-groups. For h and a characteristic
length, L, the groups may be chosen as

NuL ≡ hL
k
, Pr ≡ ν

α
, Π3 ≡ L3

ν2

∣∣g∣∣ , Π4 ≡ β |Tw − T∞| = β∆T

where we set ∆T ≡ |Tw − T∞|. Two of these groups are new to us:

• Π3 ≡ gL3/ν2: This characterizes the importance of buoyant forces
relative to viscous forces.2

2Note that gL is dimensionally the same as a velocity squared—say, u2. Then
√
Π3

can be interpreted as a Reynolds number: uL/ν . In a laminar b.l. we recall that Nu ∝
Re1/2; so here we expect that Nu ∝ Π1/4

3 .
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• Π4 ≡ β∆T : This characterizes the thermal expansion of the fluid.
For an ideal gas,

β = 1
v

∂
∂T

(
RT
p

)
p
= 1
T∞

where R is the gas constant. Therefore, for ideal gases

β∆T = ∆T
T∞

(8.8)

It turns out that Π3 and Π4 (which do not bear the names of famous
people) usually appear as a product. This product is called the Grashof
(pronounced Gráhs-hoff) number,3 GrL, where the subscript designates
the length on which it is based:

Π3Π4 ≡ GrL = gβ∆TL3

ν2
(8.9)

Two exceptions in which Π3 and Π4 appear independently are rotating
systems (where Coriolis forces are part of the body force) and situations
in which β∆T is no longer  1 but instead approaches unity. We there-
fore expect to correlate data in most other situations with functional
equations of the form

Nu = fn(Gr,Pr) (8.10)

Another attribute of the dimensionless functional equation is that the
primary independent variable is usually the product of Gr and Pr. This
is called the Rayleigh number, RaL, where the subscript designates the
length on which it is based:

RaL ≡ GrLPr = gβ∆TL3

αν
(8.11)

3Nu, Pr, Π3, Π4, and Gr were all suggested by Nusselt in his pioneering paper on
convective heat transfer [8.1]. Grashof was a notable nineteenth-century mechanical
engineering professor who was simply given the honor of having a dimensionless group
named after him posthumously (see, e.g., [8.2]). He did not work with natural convec-
tion.
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Figure 8.3 The correlation of h data for vertical isothermal
surfaces by Churchill and Chu [8.3], using NuL = fn(RaL,Pr).
(Applies to full range of Pr.)

Thus, most (but not all) analyses and correlations of natural convection
yield

Nu = fn
(

Ra︸︷︷︸
primary (or most important)
independent variable

, Pr︸︷︷︸
secondary parameter

)
(8.12)

Figure 8.3 is a careful selection of the best data available for natural
convection from vertical isothermal surfaces. These data were organized
by Churchill and Chu [8.3] and they span 13 orders of magnitude of the
Rayleigh number. The correlation of these data in the coordinates of
Fig. 8.2 is exactly in the form of eqn. (8.12), and it brings to light the
dominant influence of RaL, while any influence of Pr is small.

The data correlate on these coordinates within a few percent up to
RaL

/
[1+(0.492/Pr9/16)]16/9 � 108. That is about where the b.l. starts ex-

hibiting turbulent behavior. Beyond that point, the overall Nusselt num-
ber, NuL, rises more sharply, and the data scatter increases somewhat
because the heat transfer mechanisms change.
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Prediction of h in natural convection on a vertical surface

The analysis of natural convection using an integral method was done
independently by Squire (see [8.4]) and by Eckert [8.5] in the 1930s. We
shall refer to this important development as the Squire-Eckert formula-
tion.

The analysis begins with the integrated momentum and energy equa-
tions. We assume δ = δt and integrate both equations to the same value
of δ:

d
dx

∫ δ

0

(
u2 − uu∞︸ ︷︷ ︸

= 0, since
u∞ = 0

)
dy = −ν ∂u

∂y

∣∣∣∣∣
y=0

+ gβ
∫ δ

0
(T − T∞)dy (8.13)

and [eqn. (6.47)]

d
dx

∫ δ

0
u(T − T∞)dy = qw

ρcp
= −α ∂T

∂y

∣∣∣∣∣
y=0

The integrated momentum equation is the same as eqn. (6.24) except
that it includes the buoyancy term, which was added to the differential
momentum equation in eqn. (8.7).

We now must estimate the temperature and velocity profiles for use in
eqns. (8.13) and (6.47). This is done here in much the same way as it was
done in Sections 6.2 and 6.3 for forced convection. We write down a set
of known facts about the profiles and then use these things to evaluate
the constants in power-series expressions for u and T .

Since the temperature profile has a fairly simple shape, a simple quadratic
expression can be used:

T − T∞
Tw − T∞

= a+ b
(
y
δ

)
+ c

(
y
δ

)2

(8.14)

Notice that the thermal boundary layer thickness, δt , is assumed equal to
δ in eqn. (8.14). This would seemingly limit the results to Prandtl num-
bers not too much larger than unity. Actually, the analysis will also prove
useful for large Pr’s because the velocity profile exerts diminishing influ-
ence on the temperature profile as Pr increases. We require the following
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things to be true of this profile:

• T
(
y = 0

) = Tw or
T − T∞
Tw − T∞

∣∣∣∣
y/δ=0

= 1 = a

• T
(
y = δ

) = T∞ or
T − T∞
Tw − T∞

∣∣∣∣
y/δ=1

= 0 = 1+ b + c

• ∂T
∂y

∣∣∣∣∣
y=δ

= 0 or
d

d(y/δ)

(
T − T∞
Tw − T∞

)
y/δ=1

= 0 = b + 2c

so a = 1, b = −2, and c = 1. This gives the following dimensionless
temperature profile:

T − T∞
Tw − T∞

= 1− 2
(
y
δ

)
+

(
y
δ

)2

=
(

1− y
δ

)2

(8.15)

We anticipate a somewhat complicated velocity profile (recall Fig. 8.1)
and seek to represent it with a cubic function:

u = uc(x)
[(

y
δ

)
+ c

(
y
δ

)2

+ d
(
y
δ

)3
]

(8.16)

where, since there is no obvious characteristic velocity in the problem,
we write uc as an as-yet-unknown function. (uc will have to increase with
x, since u must increase with x.) We know three things about u:

• u(y = 0) = 0
{

we have already satisfied this condition by
writing eqn. (8.16) with no lead constant

• u(y = δ) = 0 or
u
uc

= 0 = (1+ c + d)

• ∂u
∂y

∣∣∣∣∣
y=δ

= 0 or
∂u

∂(y/δ)

∣∣∣∣∣
y/δ=1

= 0 = (1+ 2c + 3d)uc

These give c = −2 and d = 1, so

u
uc(x)

= y
δ

(
1− y

δ

)2

(8.17)

We could also have written the momentum equation (8.7) at the wall,
where u = v = 0, and created a fourth condition:

∂2u
∂y2

∣∣∣∣∣
y=0

= −gβ(Tw − T∞)
ν
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Figure 8.4 The temperature and velocity profiles for air (Pr =
0.7) in a laminar convection b.l.

and then we could have evaluated uc(x) as βg|Tw−T∞|δ2
/
4ν . A correct

expression for uc will eventually depend upon these variables, but we
will not attempt to make uc fit this particular condition. Doing so would
yield two equations, (8.13) and (6.47), in a single unknown, δ(x). It would
be impossible to satisfy both of them. Instead, we shall allow the velocity
profile to violate this condition slightly and write

uc(x) = C1
βg |Tw − T∞|

ν
δ2(x) (8.18)

Then we shall solve the two integrated conservation equations for the
two unknowns, C1 (which should �¼) and δ(x).

The dimensionless temperature and velocity profiles are plotted in
Fig. 8.4. With them are included Schmidt and Beckmann’s exact calcula-
tion for air (Pr = 0.7), as presented in [8.4]. Notice that the integral ap-
proximation to the temperature profile is better than the approximation
to the velocity profile. That is fortunate, since the temperature profile
exerts the major influence in the heat transfer solution.

When we substitute eqns. (8.15) and (8.17) in the momentum equa-
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tion (8.13), using eqn. (8.18) for uc(x), we get

C2
1

(
gβ |Tw − T∞|

ν

)2 d
dx

[
δ5

∫ 1

0

(
y
δ

)2 (
1− y

δ

)4

d
(
y
δ

)
︸ ︷︷ ︸

= 1
105

]

= gβ |Tw − T∞|δ
∫ 1

0

(
1− y

δ

)2

d
(
y
δ

)
︸ ︷︷ ︸

= 1
3

− C1gβ |Tw − T∞|δ(x) ∂
∂
(
y
/
δ
)
[
y
δ

(
1− y

δ

)2
]

y
δ=0︸ ︷︷ ︸

=1

(8.19)

where we change the sign of the terms on the left by replacing (Tw −T∞)
with its absolute value. Equation (8.19) then becomes(

1
21

C2
1
gβ |Tw − T∞|

ν2

)
δ3 dδ
dx

= 1
3
− C1

or

dδ4

dx
=

84
(

1
3
− C1

)

C2
1
gβ |Tw − T∞|

ν2

Integrating this with the b.c., δ(x = 0) = 0, gives

δ4 =
84

(
1
3
− C1

)

C2
1
gβ |Tw − T∞|

ν2
x

(8.20)

Substituting eqns. (8.15), (8.17), and (8.18) in eqn. (6.47) likewise gives

(Tw − T∞)C1
gβ |Tw − T∞|

ν
d
dx

[
δ3

∫ 1

0

y
δ

(
1− y

δ

)4

d
(
y
δ

)
︸ ︷︷ ︸

= 1
30

= −α Tw − T∞
δ

d
d(y/δ)

[(
1− y

δ

)2
]
y/δ=0︸ ︷︷ ︸

=−2
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or

3
C1

30
δ3 dδ
dx

= C1

40
dδ4

dx
= 2

Pr
gβ |Tw − T∞|

ν2

Integrating this with the b.c., δ(x = 0) = 0, we get

δ4 = 80

C1Pr
gβ|Tw − T∞|

ν2

x (8.21)

Equating eqns. (8.20) and (8.21) for δ4, we then obtain

21
20

1
3
− C1

C1
gβ |Tw − T∞|

ν2

x = 1

Pr
gβ |Tw − T∞|

ν2

x

or

C1 =
Pr

3
(

20
21
+ Pr

) (8.22)

Then, from eqn. (8.21):

δ4 =
240

(
20
21
+ Pr

)

Pr2gβ |Tw − T∞|
ν2

x

or

δ
x
= 3.936

(
0.952+ Pr

Pr2

)1/4 1

Gr1/4
x

(8.23)

Equation (8.23) can be combined with the known temperature profile,
eqn. (8.15), and substituted in Fourier’s law to find q:

q = −k ∂T
∂y

∣∣∣∣∣
y=0

= −k(Tw − T∞)
δ

d
(
T − T∞
Tw − T∞

)

d
(
y
δ

)
∣∣∣∣∣∣∣∣∣
y/δ=0︸ ︷︷ ︸

=−2

= 2
k∆T
δ

(8.24)
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so, writing h = q
/|Tw − T∞| ≡ q/∆T , we obtain4

Nux ≡ qx
∆Tk

= 2
x
δ
= 2

3.936
(PrGrx)1/4

(
Pr

0.952+ Pr

)1/4

or

Nux = 0.508 Ra1/4
x

(
Pr

0.952+ Pr

)1/4

(8.25)

This is the Squire-Eckert result for the local heat transfer from a vertical
isothermal wall during laminar natural convection. It applies for either
Tw > T∞ or Tw < T∞.

The average heat transfer coefficient can be obtained from

h =

∫ L

0
q(x)dx

L∆T
=

∫ L

0
h(x)dx

L

Thus,

NuL = hL
k
= 1
k

∫ L

0

k
x

Nux dx = 4
3

Nux

∣∣∣∣
x=L

or

NuL = 0.678 Ra1/4
L

(
Pr

0.952+ Pr

)1/4

(8.26)

All properties in eqn. (8.26) and the preceding equations should be eval-
uated at T = (Tw + T∞)

/
2 except in gases, where β should be evaluated

at T∞.
Example 8.1

A thin-walled metal tank containing fluid at 40◦C cools in air at 14◦C;
h is very large inside the tank. If the sides are 0.4 m high, compute
h, q, and δ at the top. Are the b.l. assumptions reasonable?

Solution.

βair = 1
/
T∞ = 1

/
(273+ 14) = 0.00348 K−1. Then

RaL = gβ∆TL3

να
= 9.8(0.00348)(40− 14)(0.4)3(

1.566× 10−5
) (

2.203× 10−5
) = 1.645× 108

4Recall that, in footnote 2, we anticipated that Nu would vary as Gr1/4. We now see
that this is the case.
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and Pr = 0.711, where the properties are evaluated at 300 K = 27◦C.
Then, from eqn. (8.26),

NuL = 0.678
(

1.645× 108
)1/4

(
0.711

0.952+ 0.711

)1/4

= 62.1

so

h = 62.1k
L

= 62.1(0.02614)
0.4

= 4.06 W/m2K

and

q = h∆T = 4.06(40− 14) = 105.5 W/m2

The b.l. thickness at the top of the tank is given by eqn. (8.23) at
x = L:

δ
L
= 3.936

(
0.952+ 0.711

0.7112

)1/4 1(
RaL

/
Pr

)1/4 = 0.0430

Thus, the b.l. thickness at the end of the plate is only 4% of the height,
or 1.72 cm thick. This is thicker than typical forced convection b.l.’s,
but it is still reasonably thin.

Example 8.2

Large thin metal sheets of length L are dipped in an electroplating
bath in the vertical position. Their average temperature is initially
cooler than the liquid in the bath. How rapidly will they come up to
bath temperature?

Solution. We can probably take Bi  1 and use the lumped-capacity
response equation (1.20). We obtain h for use in eqn. (1.20) from
eqn. (8.26):

h = 0.678
k
L

(
Pr

0.952+ Pr

)1/4
(
gβL3

αν

)1/4

︸ ︷︷ ︸
call this B

∆T 1/4

Since h∝ ∆T 1/4, eqn. (1.20) becomes

d(T − Tb)
dt

= − BA
ρcV

(T − Tb)5/4
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where V/A = the half-thickness of the plate, w. Integrating this be-
tween the initial temperature of the plate, Ti, and the temperature at
time t, we get ∫ T

Ti

d(T − Tb)
(T − Tb)5/4 = −

∫ t

0

B
ρcw

dt

so

T − Tb =
[

1

(Ti − Tb)1/4 +
B

4ρcw
t
]−4

(Before we use this result, we should check Bi = Bw∆T 1/4
/
k to be

certain that it is, in fact, less than unity.) The temperature can be put
in dimensionless form as

T − Tb
Ti − Tb

=
[

1+ B (Ti − Tb)1/4

4ρcw
t
]−4

where the coefficient of t is a kind of inverse time constant of the
response. Thus, the temperature dependence of h in natural convec-
tion leads to a solution quite different from the exponential response
that resulted from a constant h [eqn. (1.22)].

Comparison of analysis and correlationswith experimental data

Churchill and Chu have proposed two equations for the data correlated
in Fig. 8.3. The simpler of the two is shown in the figure. It is

NuL = 0.68+ 0.67 Ra1/4
L

[
1+

(
0.492

Pr

)9/16
]−4/9

(8.27)

This approaches to within 1.2% of the Squire-Eckert prediction as Pr and
RaL are increased, and it differs from the prediction by only 5.5% if the
fluid is a gas and RaL > 105. Typical Rayleigh numbers usually exceed
105, so we conclude that the Squire–Eckert prediction is remarkably ac-
curate in the range of practical interest, despite the approximations upon
which it is built. The additive constant of 0.68 in eqn. (8.27) is required
to correct eqn. (8.27) at low RaL, where the b.l. assumptions are invalid
and NuL is no longer proportional to Ra1/4

L .
At low Prandtl numbers, the Squire-Eckert prediction fails and eqn.

(8.27) has to be used. In the turbulent regime, Gr � 109 [8.6], eqn. (8.27)
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predicts a lower bound on the data (see Fig. 8.3). It thus gives a conserva-
tive estimate in this range, although it is really intended only for laminar
boundary layers. In this correlation, as in eqn. (8.26), the thermal prop-
erties should all be evaluated at a mean b.l. temperature, except for β,
which is to be evaluated at T∞ if the fluid is a gas.

Example 8.3

Verify the first heat transfer coefficient in Table 1.1. This is for air at
20◦C next to a 0.3 m high wall at 50◦C.

Solution. At T = 35◦C = 308 K, we find Pr = 0.71, ν = 16.45 ×
10−6 m2/s,α = 0.2318×10−4 m2/s, andβ = 1

/
(273+20) = 0.00341 K−1.

Then

RaL = gβ∆TL3

αν
= 9.8(0.00341)(30)(0.3)3

(16.45)(0.2318)10−10
= 7.10× 107

The Squire-Eckert prediction gives

NuL = 0.678
(

7.10× 107
)1/4

(
0.71

0.952+ 0.71

)1/4

= 50.3

so

h = 50.3
k
L
= 50.3

(
0.0267

0.3

)
= 4.48 W/m2K

And the Churchill-Chu correlation gives

NuL = 0.68+ 0.67

(
7.10× 107

)1/4[
1+ (0.492/0.71)9/16

]4/9 = 47.88

so

h = 47.88
(

0.0267
0.3

)
= 4.26 W/m2K

The prediction is therefore within 5% of the correlation. We should
use the latter result in preference to the theoretical one, although the
difference is slight.
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Variable-properties problem

Sparrow and Gregg [8.7] provide an extended discussion of the influence
of physical property variations on predicted values of Nu. They found
that while β for gases should be evaluated at T∞, all other properties
should be evaluated at Tr , where

Tr = Tw − C (Tw − T∞) (8.28)

and where C = 0.38 for gases. Most books recommend that a simple
mean between Tw and T∞ (or C = 0.50) be used. A simple mean seldom
differs much from the more precise result above, of course.

It has also been shown by Barrow and Sitharamarao [8.8] that when
β∆T is no longer  1, the Squire-Eckert formula should be corrected as
follows:

Nu = Nusq−Ek

[
1+ 3

5β∆T +O(β∆T)2
]1/4

(8.29)

This same correction can be applied to the Churchill-Chu correlation or
to other expressions for Nu. Since β = 1

/
T∞ for an ideal gas, eqn. (8.29)

gives only about a 1.5% correction for a 330 K plate heating 300 K air.

Note on the validity of the boundary layer approximations

The boundary layer approximations are sometimes put to a rather se-
vere test in natural convection problems. Thermal b.l. thicknesses are
often fairly large, and the usual analyses that take the b.l. to be thin can
be significantly in error. This is particularly true as Gr becomes small.
Figure 8.5 includes three pictures that illustrate this. These pictures are
interferograms (or in the case of Fig. 8.5c, data deduced from interfer-
ograms). An interferogram is a photograph made in a kind of lighting
that causes regions of uniform density to appear as alternating light and
dark bands.

Figure 8.5a was made at the University of Kentucky by G.S. Wang and
R. Eichhorn. The Grashof number based on the radius of the leading
edge is 2250 in this case. This is low enough to result in a b.l. that is
larger than the radius near the leading edge. Figure 8.5b and c are from
Kraus’s classic study of natural convection visualization methods [8.9].
Figure 8.5c shows that, at Gr = 585, the b.l. assumptions are quite unrea-
sonable since the cylinder is small in comparison with the large region
of thermal disturbance.



a. A 1.34 cm wide flat plate with a
rounded leading edge in air. Tw =
46.5◦C, ∆T = 17.0◦C, Grradius � 2250

b. A square cylinder with a fairly low
value of Gr. (Rendering of an interfer-
ogram shown in [8.9].)

c. Measured isotherms around a cylinder
in airwhen GrD ≈ 585 (from [8.9]).

Figure 8.5 The thickening of the b.l. during natural con-
vection at low Gr, as illustrated by interferograms made on
two-dimensional bodies. (The dark lines in the pictures are
isotherms.)

381
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The analysis of free convection becomes a far more complicated prob-
lem at low Gr’s, since the b.l. equations can no longer be used. We shall
not discuss any of the numerical solutions of the full Navier-Stokes equa-
tions that have been carried out in this regime. We shall instead note that
correlations of data using functional equations of the form

Nu = fn(Ra,Pr)

will be the first thing that we resort to in such cases. Indeed, Fig. 8.3 re-
veals that Churchill and Chu’s equation (8.27) already serves this purpose
in the case of the vertical isothermal plate, at low values of Ra ≡ Gr Pr.

8.4 Natural convection in other situations

Natural convection from horizontal isothermal cylinders

Churchill and Chu [8.10] provide yet another comprehensive correlation
of existing data. For horizontal isothermal cylinders, they find that an
equation with the same form as eqn. (8.27) correlates the data for hor-
izontal cylinders as well. Horizontal cylinder data from a variety of
sources, over about 24 orders of magnitude of the Rayleigh number based
on the diameter, RaD, are shown in Fig. 8.6. The equation that correlates
them is

NuD = 0.36+ 0.518 Ra1/4
D[

1+ (0.559/Pr)9/16
]4/9 (8.30)

They recommend that eqn. (8.30) be used in the range 10−6 B RaD B 109.
When RaD is greater than 109, the flow becomes turbulent. The fol-

lowing equation is a little more complex, but it gives comparable accuracy
over a larger range:

NuD =

0.60+ 0.387


 RaD[

1+ (0.559/Pr)9/16
]16/9


1/6




2

(8.31)

The recommended range of applicability of eqn. (8.31) is

10−6 B RaD
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Figure 8.6 The data of many investigators for heat transfer
from isothermal horizontal cylinders during natural convec-
tion, as correlated by Churchill and Chu [8.10].

Example 8.4

Space vehicles are subject to a “g-jitter,” or background variation of
acceleration, on the order of 10−6 or 10−5 earth gravities. Brief pe-
riods of gravity up to 10−4 or 10−2 earth gravities can be exerted
by accelerating the whole vehicle. A certain line carrying hot oil is
½ cm in diameter and it is at 127◦C. How does Q vary with g-level if
T∞ = 27◦C in the air around the tube?

Solution. The average b.l. temperature is 350 K. We evaluate prop-
erties at this temperature and write g as ge× (g-level), where ge is g
at the earth’s surface and the g-level is the fraction of ge in the space
vehicle.

RaD = g
(
∆T

/
T∞

)
D3

να
=

9.8
(

400− 300
300

)
(0.005)3

2.062(10)−52.92(10)−5

(
g-level

)
= (678.2)

(
g-level

)
From eqn. (8.31), with Pr = 0.706, we compute

NuD =

0.6+ 0.387

[
678.2[

1+ (0.559/0.706)9/16
]16/9

]1/6

︸ ︷︷ ︸
=0.952

(g-level)1/6




2

so
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g-level NuD h = NuD

(
0.0297
0.005

)
Q = πDh∆T

10−6 0.483 2.87 W/m2K 4.51 W/m of tube
10−5 0.547 3.25 W/m2K 5.10 W/m of tube
10−4 0.648 3.85 W/m2K 6.05 W/m of tube
10−2 1.086 6.45 W/m2K 10.1 W/m of tube

The numbers in the rightmost column are quite low. Cooling is clearly
inefficient at these low gravities.

Natural convection from vertical cylinders

The heat transfer from the wall of a cylinder with its axis running verti-
cally is the same as that from a vertical plate, so long as the thermal b.l. is
thin. However, if the b.l. is thick, as is indicated in Fig. 8.7, heat transfer
will be enhanced by the curvature of the thermal b.l. This correction was
first considered some years ago by Sparrow and Gregg, and the analysis
was subsequently extended with the help of more powerful numerical
methods by Cebeci [8.11].

Figure 8.7 includes the corrections to the vertical plate results that
were calculated for many Pr’s by Cebeci. The left-hand graph gives a
correction that must be multiplied by the local flat-plate Nusselt number
to get the vertical cylinder result. Notice that the correction increases
when the Grashof number decreases. The right-hand curve gives a similar
correction for the overall Nusselt number on a cylinder of height L. Notice
that in either situation, the correction for all but liquid metals is less than
1% if D/(x or L) < 0.02 Gr1/4

x or L.

Heat transfer from general submerged bodies

Spheres. The sphere is an interesting case because it has a clearly speci-
fiable value of NuD as RaD → 0. We look first at this limit. When the
buoyancy forces approach zero by virtue of:

• low gravity, • very high viscosity,

• small diameter, • a very small value of β,

then heated fluid will no longer be buoyed away convectively. In that case,
only conduction will serve to remove heat. Using shape factor number 4
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Figure 8.7 Corrections for h and h on vertical isother-
mal plates to make them apply to vertical isothermal cylin-
ders [8.11].

in Table 5.4, we compute in this case

lim
RaD→0

NuD = Q
A∆T

D
k
= k∆T(S)D

4π(D/2)2∆Tk
= 4π(D/2)

4π(D/4)
= 2 (8.32)

Every proper correlation of data for heat transfer from spheres there-
fore has the lead constant, 2, in it.5 A typical example is that of Yuge [8.12]
for spheres immersed in gases:

NuD = 2+ 0.43 Ra1/4
D , RaD < 105 (8.33)

A more complex expression [8.13] encompasses other Prandtl numbers:

NuD = 2+ 0.589 Ra1/4
D[

1+ (0.492/Pr)9/16
]4/9 RaD < 1012 (8.34)

This result has an estimated uncertainty of 5% in air and an rms error of
about 10% at higher Prandtl numbers.

5It is important to note that while NuD for spheres approaches a limiting value at
small RaD , no such limit exists for cylinders or vertical surfaces. The constants in
eqns. (8.27) and (8.30) are not valid at extremely low values of RaD .



386 Natural convection in single-phase fluids and during film condensation §8.4

Rough estimate of Nu for other bodies. In 1973 Lienhard [8.14] noted
that, for laminar convection in which the b.l. does not separate, the ex-
pression

Nuτ � 0.52 Ra1/4
τ (8.35)

would predict heat transfer from any submerged body within about 10%
if Pr is not  1. The characteristic dimension in eqn. (8.35) is the length
of travel, τ , of fluid in the unseparated b.l.

In the case of spheres without separation, for example, τ = πD/2, the
distance from the bottom to the top around the circumference. Thus, for
spheres, eqn. (8.35) becomes

hπD
2k

= 0.52

[
gβ∆T(πD/2)3

να

]1/4

or

hD
k
= 0.52

(
2
π

)(
π
2

)3/4
[
gβ∆TD3

να

]1/4

or

NuD = 0.465 Ra1/4
D

This is within 8% of Yuge’s correlation if RaD remains fairly large.

Laminar heat transfer from inclined and horizontal plates

In 1953, Rich [8.15] showed that heat transfer from inclined plates could
be predicted by vertical plate formulas if the component of the gravity
vector along the surface of the plate was used in the calculation of the
Grashof number. Thus, the heat transfer rate decreases as (cosθ)1/4,
where θ is the angle of inclination measured from the vertical, as shown
in Fig. 8.8.

Subsequent studies have shown that Rich’s result is substantially cor-
rect for the lower surface of a heated plate or the upper surface of a
cooled plate. For the upper surface of a heated plate or the lower surface
of a cooled plate, the boundary layer becomes unstable and separates at
a relatively low value of Gr. Experimental observations of such instabil-
ity have been reported by Fujii and Imura [8.16], Vliet [8.17], Pera and
Gebhart [8.18], and Al-Arabi and El-Riedy [8.19], among others.
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Figure 8.8 Natural convection b.l.’s on some inclined and hor-
izontal surfaces. The b.l. separation, shown here for the unsta-
ble cases in (a) and (b), occurs only at sufficiently large values
of Gr.

In the limit θ = 90◦ — a horizontal plate — the fluid flow above a hot
plate or below a cold plate must form one or more plumes, as shown in
Fig. 8.8c and d. In such cases, the b.l. is unstable for all but small Rayleigh
numbers, and even then a plume must leave the center of the plate. The
unstable cases can only be represented with empirical correlations.

Theoretical considerations, and experiments, show that the Nusselt
number for laminar b.l.s on horizontal and slightly inclined plates varies
as Ra1/5 [8.20, 8.21]. For the unstable cases, when the Rayleigh number
exceeds 104 or so, the experimental variation is as Ra1/4, and once the
flow is fully turbulent, for Rayleigh numbers above about 107, experi-
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ments show a Ra1/3 variation of the Nusselt number [8.22, 8.23]. In the
latter case, both NuL and Ra1/3

L are proportional to L, so that the heat
transfer coefficient is independent of L. Moreover, the flow field in these
situations is driven mainly by the component of gravity normal to the
plate.

Unstable Cases: For the lower side of cold plates and the upper side
of hot plates, the boundary layer becomes increasingly unstable as Ra is
increased.

• For inclinations θ � 45◦ and 105 B RaL B 109, replaceg withg cosθ
in eqn. (8.27).

• For horizontal plates with Rayleigh numbers above 107, nearly iden-
tical results have been obtained by many investigators. From these
results, Raithby and Hollands propose [8.13]:

NuL = 0.14 Ra1/3
L

(
1+ 0.0107 Pr

1+ 0.01 Pr

)
, 0.024 B Pr B 2000 (8.36)

This formula is consistent with available data up to RaL = 2×1011,
and probably goes higher. As noted before, the choice of length-
scale L is immaterial. Fujii and Imura’s results support using the
above for 60◦ B θ B 90◦ with g in the Rayleigh number.

For high Ra in gases, temperature differences and variable proper-
ties effects can be large. From experiments on upward facing plates,
Clausing and Berton [8.23] suggest evaluating all gas properties at
a reference temperature, in kelvin, of

Tref = Tw − 0.83 (Tw − T∞) for 1 B Tw/T∞ B 3.

• For horizontal plates of area A and perimeter P at lower Rayleigh
numbers, Raithby and Hollands suggest [8.13]

NuL∗ = 0.560 Ra1/4
L∗[

1+ (0.492/Pr)9/16
]4/9 (8.37a)

where, following Lloyd and Moran [8.22], a characteristic length-
scale L∗ = A/P , is used in the Rayleigh and Nusselt numbers. If
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NuL∗ � 10, the b.l.s will be thick, and they suggest correcting the
result to

Nucorrected = 1.4
ln

(
1+ 1.4

/
NuL∗

) (8.37b)

These equations are recommended6 for 1 < RaL∗ < 107.

• In general, for inclined plates in the unstable cases, Raithby and
Hollands [8.13] recommend that the heat flow be computed first
using the formula for a vertical plate with g cosθ and then using
the formula for a horizontal plate with g sinθ (i.e., the component
of gravity normal to the plate) and that the larger value of the heat
flow be taken.

Stable Cases: For the upper side of cold plates and the lower side of hot
plates, the flow is generally stable. The following results assume that the
flow is not obstructed at the edges of the plate; a surrounding adiabatic
surface, for example, will lower h [8.24, 8.25].

• For θ < 88◦ and 105 B RaL B 1011, eqn. (8.27) is still valid for the
upper side of cold plates and the lower side of hot plates when g
is replaced with g cosθ in the Rayleigh number [8.16].

• For downward-facing hot plates and upward-facing cold plates of
width L with very slight inclinations, Fujii and Imura give:

NuL = 0.58 Ra1/5
L (8.38)

This is valid for 106 < RaL < 109 if 87◦ B θ B 90◦ and for 109 B
RaL < 1011 if 89◦ B θ B 90◦ . RaL is based on g (not g cosθ).
Fujii and Imura’s results are for two-dimensional plates—ones in
which infinite breadth has been approximated by suppression of
end effects.

For circular plates of diameter D in the stable horizontal configu-
rations, the data of Kadambi and Drake [8.26] suggest that

NuD = 0.82 Ra1/5
D Pr0.034 (8.39)

6 Raithby and Hollands also suggest using a blending formula for 1 < RaL∗ < 1010

Nublended,L∗ =
[(

Nucorrected
)10 + (

Nuturb
)10

]1/10
(8.37c)

in which Nuturb is calculated from eqn. (8.36) using L∗. The formula is useful for
numerical progamming, but its effect on h is usually small.



390 Natural convection in single-phase fluids and during film condensation §8.4

Figure 8.9 The mean value of ∆T ≡ Tw − T∞ during natural
convection.

Natural convection with uniform heat flux

When qw is specified instead of ∆T ≡ (Tw − T∞) in natural convection,
there is a problem that did not arise in forced convection. That problem
is that ∆T , which appears both in Nu on the left and in Ra on the right, is
now the unknown dependent variable. Since Nu usually varies as Ra1/4,
we can write

Nux = qw
∆T

x
k
∝ Ra1/4

x ∝ ∆T 1/4x3/4

This can be solved for ∆T in the following way:

∆T = C
(
x
L

)1/5

(8.40)

where C involves qw , L, and the relevant physical properties. Then the
average of ∆T over the length of the heater is given by

∆T
C
=

∫ 1

0

(
x
L

)1/5

d
(
x
L

)
= 5

6
(8.41)

We plot ∆T against x/L in Fig. 8.9. Here, ∆T and ∆T (x/L = ½) are
within 4% of each other. This suggests the first of two strategies for
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eliminating the dependent variable ∆T from the right-hand side of an
equation for the Nusselt number:

1. If we are interested in average values of ∆T , we can use ∆T evalu-
ated at the midpoint of the plate on the right-hand side.

2. If we want to form an equation for Nux ≡ qwx
/
k∆T(x), we can use

a Rayleigh number, Ra∗, defined as

Ra∗x ≡ RaxNux ≡ gβ∆Tx3

να
qwx
∆Tk

= gβqwx4

kνα
(8.42)

Churchill and Chu, for example, show that their vertical plate correla-
tion formula, eqn. (8.27), will correlate qw = constant data exceptionally
well in the range RaL > 1 when RaL is based on ∆T at the middle of the
plate. For design purposes, however, we wish to eliminate ∆T from the
right-hand side, so we replace RaL with Ra∗L

/
NuL. The result is

NuL = 0.68+ 0.67
(
Ra∗L

)1/4

/
Nu

1/4
L

[
1+

(
0.492

Pr

)9/16
]4/9

where NuL = qwL/k∆T . This can be written in the form

Nu
5/4
L − 0.68 Nu

1/4
L = 0.67

(
Ra∗L

)1/4[
1+ (0.492/Pr)9/16

]4/9 (8.43)

for laminar natural convection from vertical plates with a uniform wall
heat flux.

The same thing can be done with eqn. (8.30) for horizontal cylinders,
although the result has not been verified experimentally for very small
values of RaL.

Some other natural convection problems

There are many natural convection situations that are beyond the scope
of this book but which arise in practice.

Natural convection in enclosures. When a natural convection process
occurs within a confined space, the heated fluid buoys up and then fol-
lows the contours of the container, releasing heat and in some way re-
turning to the heater. This recirculation process normally enhances heat
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transfer beyond that which would occur by conduction through the sta-
tionary fluid. These processes are of importance to energy conserva-
tion processes in buildings (as in multiply glazed windows, uninsulated
walls, and attics), to crystal growth and solidification processes, to hot
or cold liquid storage systems, and to countless other configurations.
Survey articles on natural convection in enclosures have been written by
Yang [8.27], Raithby and Hollands [8.13], and Catton [8.28].

Combined natural and forced convection. When forced convection along,
say, a vertical wall occurs at a relatively low velocity but at a relatively
high heating rate, the resulting density changes can give rise to a super-
imposed natural convection process. We saw in footnote 2 on page 368
that Gr1/2

L plays the role of of a natural convection Reynolds number, it
follows that we can estimate of the relative importance of natural and
forced convection can be gained by considering the ratio

GrL
Re2

L
= strength of natural convection flow

strength of forced convection flow
(8.44)

where ReL is for the forced convection along the wall. If this ratio is small
compared to one, the flow is essentially that due to forced convection,
whereas if it is large compared to one, we have natural convection. When
GrL

/
Re2

L is on the order of one, we have a mixed convection process.

It should be clear that the relative orientation of the forced flow and
the natural convection flow matters. For example, compare cool air flow-
ing downward past a hot wall to cool air flowing upward along a hot wall.
The former situation is called opposing flow and the latter is called as-
sisting flow. Opposing flow may lead to boundary layer separation and
degraded heat transfer.

Churchill [8.29] has provided an extensive discussion of both the con-
ditions that give rise to mixed convection and the prediction of heat trans-
fer for it. Review articles on the subject have been written by Chen and
Armaly [8.30] and by Aung [8.31].
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Example 8.5

A horizontal circular disk heater of diameter 0.17 m faces downward
in air at 27◦C. If it delivers 15 W, estimate its average surface temper-
ature.

Solution. We have no formula for this situation, so the problem
calls for some judicious guesswork. Following the lead of Churchill
and Chu, we replace RaD with Ra∗D/NuD in eqn. (8.39):

(
NuD

)6/5 =
(
qwD
∆Tk

)6/5

= 0.82
(
Ra∗D

)1/5 Pr0.034

so

∆T = 1.18
qwD

/
k(

gβqwD4

kνα

)1/6

Pr0.028

= 1.18

(
15

π(0.085)2

)
0.17

0.02614[
9.8[15/π(0.085)2]0.174

300(0.02164)(1.566)(2.203)10−10

]1/6

(0.711)0.028

= 140 K

In the preceding computation, all properties were evaluated at T∞.
Now we must return the calculation, reevaluating all properties except
β at 27+ (140/2) = 97◦C:

∆T corrected = 1.18
661(0.17)/0.03104[

9.8[15/π(0.085)2]0.174

300(0.03104)(3.231)(2.277)10−10

]1/6

(0.99)

= 142 K

so the surface temperature is 27+ 142 = 169◦C.
That is rather hot. Obviously, the cooling process is quite ineffec-

tive in this case.
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8.5 Film condensation

Dimensional analysis and experimental data

The dimensional functional equation for h (or h) during film condensa-
tion is7

h or h = fn
[
cp, ρf ,hfg, g

(
ρf − ρg

)
, k, µ, (Tsat − Tw) , L or x

]
where hfg is the latent heat of vaporization. It does not appear in the
differential equations (8.4) and (6.40); however, it is used in the calcula-
tion of δ [which enters in the b.c.’s (8.5)]. The film thickness, δ, depends
heavily on the latent heat and slightly on the sensible heat, cp∆T , which
the film must absorb to condense. Notice, too, that g(ρf−ρg) is included
as a product, because gravity only enters the problem as it acts upon the
density difference [cf. eqn. (8.4)].

The problem is therefore expressed nine variables in J, kg, m, s, and
◦C (where we once more avoid resolving J into N ·m since heat is not
being converted into work in this situation). It follows that we look for
9− 5 = 4 pi-groups. The ones we choose are

Π1 = NuL ≡ hL
k

Π2 = Pr ≡ ν
α

Π3 = Ja ≡ cp(Tsat − Tw)
hfg

Π4 ≡
ρf (ρf − ρg)ghfgL3

µk(Tsat − Tw)

Two of these groups are new to us. The group Π3 is called the Jakob
number, Ja, to honor Max Jakob’s important pioneering work during the
1930s on problems of phase change. It compares the maximum sensible
heat absorbed by the liquid to the latent heat absorbed. The group Π4

does not normally bear anyone’s name, but, if it is multiplied by Ja, it
may be regarded as a Rayleigh number for the condensate film.

Notice that if we condensed water at 1 atm on a wall 10◦C below
Tsat, then Ja would equal 4.174(10/2257) = 0.0185. Although 10◦C is a
fairly large temperature difference in a condensation process, it gives a
maximum sensible heat that is less than 2% of the latent heat. The Jakob
number is accordingly small in most cases of practical interest, and it
turns out that sensible heat can often be neglected. (There are important
exceptions to this.) The same is true of the role of the Prandtl number.
Therefore, during film condensation

7Note that, throughout this section, k, µ, cp , and Pr refer to properties of the liquid,
rather than the vapor.
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NuL = fn


 ρf (ρf − ρg)ghfgL3

µk(Tsat − Tw)︸ ︷︷ ︸

primary independent variable, Π4

,Pr, Ja︸ ︷︷ ︸
secondary independent
variables


 (8.45)

Equation (8.45) is not restricted to any geometrical configuration,
since the same variables govern h during film condensation on any body.
Figure 8.10, for example, shows laminar film condensation data given
for spheres by Dhir8 [8.32]. They have been correlated according to
eqn. (8.12). The data are for only one value of Pr but for a range of
Π4 and Ja. They generally correlate well within ±10%, despite a broad
variation of the not-very-influential variable, Ja. A predictive curve [8.32]
is included in Fig. 8.10 for future reference.

Laminar film condensation on a vertical plate

Consider the following feature of film condensation. The latent heat of
a liquid is normally a very large number. Therefore, even a high rate of
heat transfer will typically result in only very thin films. These films move
relatively slowly, so it is safe to ignore the inertia terms in the momentum
equation (8.4):

u
∂u
∂x

+ v
∂v
∂y︸ ︷︷ ︸

�0

=
(

1− ρg
ρf

)
g + ν

∂2u
∂y2︸ ︷︷ ︸
� d2u
dy2

This result will give u = u(y,δ) (where δ is the local b.l. thickness)
when it is integrated. We recognize that δ = δ(x), so that u is not strictly
dependent on y alone. However, the y-dependence is predominant, and
it is reasonable to use the approximate momentum equation

d2u
dy2

= −ρf − ρg
ρf

g
ν

(8.46)

8Professor Dhir very kindly recalculated his data into the form shown in Fig. 8.10
for use here.
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Figure 8.10 Correlation of the data of Dhir [8.32] for laminar
film condensation on spheres at one value of Pr and for a range
of Π4 and Ja. [Properties were evaluated at (Tsat + Tw)/2.]

This simplification was made by Nusselt in 1916 when he set down the
original analysis of film condensation [8.33]. He also eliminated the con-
vective terms from the energy equation (6.40):

u
∂T
∂x

+ v
∂T
∂y︸ ︷︷ ︸

�0

= α
∂2T
∂y2
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on the same basis. The integration of eqn. (8.46) subject to the b.c.’s

u
(
y = 0

) = 0 and
∂u
∂y

∣∣∣∣∣
y=δ

= 0

gives the parabolic velocity profile:

u = (ρf − ρg)gδ2

2µ

[
2
(
y
δ

)
−

(
y
δ

)2
]

(8.47)

And integration of the energy equation subject to the b.c.’s

T
(
y = 0

) = Tw and T
(
y = δ

) = Tsat

gives the linear temperature profile:

T = Tw + (Tsat − Tw)
y
δ

(8.48)

To complete the analysis, we must calculate δ. This can be done in
two steps. First, we express the mass flow rate in the film, ṁ, in terms
of δ, with the help of eqn. (8.47):

ṁ =
∫ δ

0
ρfudy =

ρf (ρf − ρg)
3µ

gδ3 (8.49)

Second, we neglect the sensible heat absorbed by that part of the film
cooled below Tsat and express the local heat flux in terms of the rate of
change of ṁ (see Fig. 8.11):

∣∣q∣∣ = k
∂T
∂y

∣∣∣∣∣
y=0

= k
Tsat − Tw

δ
= hfg

dṁ
dx

(8.50)

Substituting eqn. (8.49) in eqn. (8.50), we obtain a first-order differen-
tial equation for δ:

k
Tsat − Tw

δ
= hfgρf (ρf − ρg)

µ
gδ2 dδ

dx
(8.51)

This can be integrated directly, subject to the b.c., δ(x = 0) = 0. The
result is

δ =
[

4k(Tsat − Tw)µx
ρf (ρf − ρg)ghfg

]1/4

(8.52)
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Figure 8.11 Heat and mass flow in an element of a condensing film.

Both Nusselt and, subsequently, Rohsenow [8.34] showed how to cor-
rect the film thickness calculation for the sensible heat that is needed to
cool the inner parts of the film below Tsat. Rohsenow’s calculation was, in
part, an assessment of Nusselt’s linear-temperature-profile assumption,
and it led to a corrected latent heat—designated h′fg—which accounted
for subcooling in the liquid film when Pr is large. Rohsenow’s result,
which we show below to be strictly true only for large Pr, was

h′fg = hfg


 1+ 0.68

cp(Tsat − Tw)
hfg︸ ︷︷ ︸

≡ Ja, Jakob number


 (8.53)

Thus, we simply replace hfg with h′fg wherever it appears explicitly in
the analysis, beginning with eqn. (8.50).

Finally, the heat transfer coefficient is obtained from

h ≡ q
Tsat − Tw

= 1
Tsat − Tw

[
k(Tsat − Tw)

δ

]
= k
δ

(8.54)

so

Nux = hx
k
= x
δ

(8.55)
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Thus, with the help of eqn. (8.53), we substitute eqn. (8.52) in eqn. (8.55)
and get

Nux = 0.707


ρf (ρf − ρg)gh′fgx

3

µk(Tsat − Tw)


1/4

(8.56)

This equation carries out the functional dependence that we antici-
pated in eqn. (8.45):

Nux = fn
(
Π4︸︷︷︸

this is clearly the dominant variable

, Ja︸︷︷︸

this is carried implicitly in h′fg

, Pr︸︷︷︸
eliminated in so far as we
neglected convective terms
in the energy equation

)

The physical properties in Π4, Ja, and Pr (with the exception of hfg)
are to be evaluated at the mean film temperature. However, if Tsat − Tw
is small—and it often is—one might approximate them at Tsat.

At this point we should ask just how great the missing influence of
Pr is and what degree of approximation is involved in representing the
influence of Ja with the use of h′fg . Sparrow and Gregg [8.35] answered
these questions with a complete b.l. analysis of film condensation. They
did not introduce Ja in a corrected latent heat but instead showed its
influence directly.

Figure 8.12 displays two figures from the Sparrow and Gregg paper.
The first shows heat transfer results plotted in the form

Nux
4
√
Π4

= fn (Ja,Pr) �→ constant, as Ja �→ 0 (8.57)

Notice that the calculation approaches Nusselt’s simple result for all
Pr as Ja → 0. It also approaches Nusselt’s result, even for fairly large
values of Ja, if Pr is not small. The second figure shows how the tem-
perature deviates from the linear profile that we assumed to exist in the
film in developing eqn. (8.48). If we remember that a Jakob number of
0.02 is about as large as we normally find in laminar condensation, it is
clear that the linear temperature profile is a very sound assumption for
nonmetallic liquids.
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Figure 8.12 Results of the exact b.l. analysis of laminar film
condensation on a vertical plate [8.35].

Sadasivan and Lienhard [8.36] have shown that the Sparrow-Gregg for-
mulation can be expressed with high accuracy, for Pr O 0.6, by including
Pr in the latent heat correction. Thus they wrote

h′fg = hfg
[
1+ (

0.683− 0.228
/
Pr

)
Ja

]
(8.58)

which includes eqn. (8.53) for Pr →∞ as we anticipated.
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The Sparrow and Gregg analysis proves that Nusselt’s analysis is quite
accurate for all Prandtl numbers above the liquid-metal range. The very
high Ja flows, for which Nusselt’s theory requires some correction, usu-
ally result in thicker films, which become turbulent so the exact analysis
no longer applies.

The average heat transfer coefficient is calculated in the usual way for
Twall = constant:

h = 1
L

∫ L

0
h(x)dx = 4

3 h(L)

so

NuL = 0.9428


ρf (ρf − ρg)gh′fgL

3

µk(Tsat − Tw)


1/4

(8.59)

Example 8.6

Water at atmospheric pressure condenses on a strip 30 cm in height
that is held at 90◦C. Calculate the overall heat transfer per meter, the
film thickness at the bottom, and the mass rate of condensation per
meter.

Solution.

δ =

4k(Tsat − Tw)νx
(ρf − ρg)gh′fg


1/4

where we have replaced hfg with h′fg :

h′fg = 2257
[

1+
(

0.683− 0.228
1.72

)
4.216(10)

2257

]
= 2280 kJ/kg

so

δ =
[

4(0.681)(10)(0.290)10−6 x
(957.2− 0.6)(9.8)(2280)(10)3

]1/4

= 0.000138x1/4

Then

δ(L) = 0.000102 m = 0.102 mm
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Notice how thin the film is. Finally, we use eqns. (8.55) and (8.58) to
compute

NuL = 4
3
L
δ
= 4(0.3)

3(0.000102)
= 3903

so

q = NuL k∆T
L

= 3903(0.681)(10)
0.3

= 88,602 W/m2

(This is a heat flow of over 88.6 kW on an area about half the size of a
desk top. That is very high for such a small temperature difference.)
Then

Q = 88,602(0.3) = 26,581 W/m = 26.5 kW/m

The rate of condensate flow, ṁ is

ṁ = Q
h′fg

= 26.5
2291

= 0.0116 kg/m·s

Condensation on other bodies

Nusselt himself extended his prediction to certain other bodies but was
restricted by the lack of a digital computer from evaluating as many cases
as he might have. In 1971 Dhir and Lienhard [8.37] showed how Nusselt’s
method could be readily extended to a large class of problems. They
showed that one need only to replace the gravity, g, with an effective
gravity, geff:

geff ≡ x
(
gR

)4/3∫ x

0
g1/3R4/3 dx

(8.60)

in eqns. (8.52) and (8.56), to predict δ and Nux for a variety of bodies.
The terms in eqn. (8.60) are (see Fig. 8.13):

• x is the distance along the liquid film measured from the upper
stagnation point.

• g = g(x), the component of gravity (or other body force) along x;
g can vary from point to point as it does in Fig. 8.13b and c.



Figure 8.13 Condensation on various bodies. g(x) is the com-
ponent of gravity or other body force in the x-direction.

403
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• R(x) is a radius of curvature about the vertical axis. In Fig. 8.13a,
it is a constant that factors out of eqn. (8.60). In Fig. 8.13c, R is
infinite. Since it appear to the same ower in both the numerator and
the denominator, it again can be factored out of eqn. (8.60). Only
in axisymmetric bodies, where R varies with x, need it be included.
When it can be factored out,

geff reduces to
xg4/3∫ x

0
g1/3 dx

(8.61)

• ge is earth-normal gravity. We introduce ge at this point to distin-
guish it from g(x).

Example 8.7

Find Nux for laminar film condensation on the top of a flat surface
sloping at θ◦ from the vertical plane.

Solution. In this case g = ge cosθ and R = ∞. Therefore, eqn. (8.60)
or (8.61) reduces to

geff = xg4/3
e (cosθ)4/3

g1/3
e (cosθ)1/3

∫ x

0
dx

= ge cosθ

as we might expect. Then, for a slanting plate,

Nux = 0.707


ρf (ρf − ρg)(ge cosθ)h′fgx

3

µk(Tsat − Tw)


1/4

(8.62)

Example 8.8

Find the overall Nusselt number for a horizontal cylinder.

Solution. There is an important conceptual hurdle here. The radius
R(x) is infinity, as shown in Fig. 8.13c—it is not the radius of the cylin-
der. It is also very easy to show that g(x) is equal to ge sin(2x/D),
where D is the diameter of the cylinder. Then

geff = xg4/3
e (sin 2x/D)4/3

g1/3
e

∫ x

0
(sin 2x/D)1/3 dx
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and, with h(x) from eqn. (8.56),

h = 2
πD

⌠⌡
πD/2

0

1√
2

k
x



ρf

(
ρf − ρg

)
h′fgx

3

µk (Tsat − Tw)
xge(sin 2x/D)4/3∫ x

0
(sin 2x/D)1/3 dx




1/4

dx

This integral can be evaulated in terms of gamma functions. The
result, when it is put back in the form of a Nusselt number, is

NuD = 0.728


ρf

(
ρf − ρg

)
geh′fgD

3

µk (Tsat − Tw)


1/4

(8.63)

for a horizontal cylinder. (Nusselt got 0.725 for the lead constant, but
he had to approximate the integral with a hand calculation.)

Some other results of this calculation include the following cases.
Sphere of diameter D:

NuD = 0.828


ρf

(
ρf − ρg

)
geh′fgD

3

µk (Tsat − Tw)


1/4

(8.64)

This result9 has already been compared with the experimental data in
Fig. 8.10.
Vertical cone with the apex on top, the bottom insulated, and a cone

angle of α◦:

Nux = 0.874 [cos(α/2)]1/4


ρf

(
ρf − ρg

)
geh′fgx

3

µk (Tsat − Tw)


1/4

(8.65)

Rotating horizontal disk10: In this case, g = ω2x, where x is the
distance from the center and ω is the speed of rotation. The Nusselt
number, based on L = (µ/ρfω)1/2, is

Nu = 0.9034


 µ

(
ρf − ρg

)
h′fg

ρfk (Tsat − Tw)


1/4

= constant (8.66)

9There is an error in [8.37]: the constant given there is 0.785. The value of 0.828
given here is correct.

10This problem was originally solved by Sparrow and Gregg [8.38].
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This result might seem strange at first glance. It says that Nu ≠ fn(x or ω).
The reason is that δ just happens to be independent of x in this config-
uration.

The Nusselt solution can thus be bent to fit many complicated geo-
metric figures. One of the most complicated ones that have been dealt
with is the reflux condenser shown in Fig. 8.14. In such a configuration,
cooling water flows through a helically wound tube and vapor condenses
on the outside, running downward along the tube. As the condensate
flows, centripetal forces sling the liquid outward at a downward angle.
This complicated flow was analyzed by Karimi [8.39], who found that

Nu ≡ hd cosα
k

=


(
ρf − ρg

)
ρfh′fgg(d cosα)3

µk∆T


1/4

fn
(
d
D
,B

)
(8.67)

where B is a centripetal parameter:

B ≡ ρf − ρg
ρf

cp∆T
h′fg

tan2 α
Pr

andα is the helix angle (see Fig. 8.14). The function on the righthand side
of eqn. (8.67) was a complicated one that must be evaluated numerically.
Karimi’s result is plotted in Fig. 8.14.

Laminar–turbulent transition

The mass flow rate of condensate in the film, ṁ, is more commonly des-
ignated as Γc kg/m · s. Its calculation in eqn. (8.49) involved substituting
eqn. (8.47) in

ṁ or Γc = ρf
∫ δ

0
udy

Equation (8.47) givesu(y) independently of any geometric features. [The
geometry is characterized by δ(x).] Thus, the resulting equation for the
mass flow rate is still

Γc =
ρf

(
ρf − ρg

)
gδ3

3µ
(8.49a)

This expression is valid for any location along any film, regardless of the
geometry of the body. The configuration will lead to variations of g(x)
and δ(x), but eqn. (8.49a) still applies.
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Figure 8.14 Fully developed film condensation heat transfer
on a helical reflux condenser [8.39].

It is useful to define a Reynolds number in terms of Γc . This is easy
to do, because Γc is equal to ρuavδ.

Rec = Γcµ = ρf (ρf − ρg)gδ3

3µ2
(8.68)

It turns out that the Reynolds number dictates the onset of film insta-
bility, just as it dictates the instability of a b.l. or of a pipe flow.11 When
Rec � 7, scallop-shaped ripples become visible on the condensate film.
When Rec reaches about 400, a full-scale laminar-to-turbulent transition
occurs.

Gregorig, Kern, and Turek [8.40] reviewed many data for the film
condensation of water and added their own measurements. Figure 8.15
shows these data in comparison with Nusselt’s theory, eqn. (8.59). The
comparison is almost perfect up to Rec � 7. Then the data start yielding
somewhat higher heat transfer rates than the prediction. This is because

11Two Reynolds numbers are defined for film condensation: Γc/µ and 4Γc/µ. The
latter one, which is simply four times as large as the one we use, is more common in
the American literature.
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Figure 8.15 Film condensation on vertical plates. Data are for
water [8.40].

the ripples improve heat transfer—just a little at first and by about 20%
when the full laminar-to-turbulent transition occurs at Rec = 400.

Above Rec = 400, NuL begins to rise with Rec . The Nusselt number
begins to exhibit an increasingly strong dependence on the Prandtl num-
ber in this turbulent regime. Therefore, one can use Fig. 8.15, directly as
a data correlation, to predict the heat transfer coefficient for steam con-
densating at 1 atm. But for other fluids with different Prandtl numbers,
one should consult [8.41] or [8.42].

Two final issues in natural convection film condensation

• Condensation in tube bundles. Nusselt showed that if n horizontal
tubes are arrayed over one another, and if the condensate leaves
each one and flows directly onto the one below it without splashing,
then

NuDfor n tubes =
NuD1 tube

n1/4
(8.69)

This is a fairly optimistic extension of the theory, of course. In
addition, the effects of vapor shear stress on the condensate and of
pressure losses on the saturation temperature are often important
in tube bundles. These effects are discussed by Rose et al. [8.42]
and Marto [8.41].
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• Condensation in the presence of noncondensable gases. When the
condensing vapor is mixed with noncondensable air, uncondensed
air must constantly diffuse away from the condensing film and va-
por must diffuse inward toward the film. This coupled diffusion
process can considerably slow condensation. The resulting h can
easily be cut by a factor of five if there is as little as 5% by mass
of air mixed into the steam. This effect was first analyzed in detail
by Sparrow and Lin [8.43]. More recent studies of this problem are
reviewed in [8.41, 8.42].

Problems

8.1 Show that Π4 in the film condensation problem can properly
be interpreted as Pr Re2

/
Ja.

8.2 A 20 cm high vertical plate is kept at 34◦C in a 20◦C room. Plot
(to scale) δ and h vs. height and the actual temperature and
velocity vs. y at the top.

8.3 Redo the Squire-Eckert analysis, neglecting inertia, to get a high-
Pr approximation to Nux . Compare your result with the Squire-
Eckert formula.

8.4 Assume a linear temperature profile and a simple triangular
velocity profile, as shown in Fig. 8.16, for natural convection
on a vertical isothermal plate. Derive Nux = fn(Pr,Grx), com-
pare your result with the Squire-Eckert result, and discuss the
comparison.

8.5 A horizontal cylindrical duct of diamond-shaped cross section
(Fig. 8.17) carries air at 35◦C. Since almost all thermal resis-
tance is in the natural convection b.l. on the outside, take Tw
to be approximately 35◦C. T∞ = 25◦C. Estimate the heat loss
per meter of duct if the duct is uninsulated. [Q = 24.0 W/m.]

8.6 The heat flux from a 3 m high electrically heated panel in a
wall is 75 W/m2 in an 18◦C room. What is the average temper-
ature of the panel? What is the temperature at the top? at the
bottom?
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Figure 8.16 Configuration for Problem 8.4.

Figure 8.17 Configuration for
Problem 8.5.

8.7 Find pipe diameters and wall temperatures for which the film
condensation heat transfer coefficients given in Table 1.1 are
valid.

8.8 Consider Example 8.6. What value of wall temperature (if any),
or what height of the plate, would result in a laminar-to-turbulent
transition at the bottom in this example?

8.9 A plate spins, as shown in Fig. 8.18, in a vapor that rotates syn-
chronously with it. Neglect earth-normal gravity and calculate
NuL as a result of film condensation.

8.10 A laminar liquid film of temperature Tsat flows down a verti-
cal wall that is also at Tsat. Flow is fully developed and the
film thickness is δo. Along a particular horizontal line, the wall
temperature has a lower value, Tw , and it is kept at that tem-
perature everywhere below that position. Call the line where
the wall temperature changes x = 0. If the whole system is
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Figure 8.18 Configuration for
Problem 8.9.

immersed in saturated vapor of the flowing liquid, calculate
δ(x), Nux , and NuL, where x = L is the bottom edge of the
wall. (Neglect any transition behavior in the neighborhood of
x = 0.)

8.11 Prepare a table of formulas of the form

h(W/m2K) = C [∆T ◦C/L m]1/4

for natural convection at normal gravity in air and in water
at T∞ = 27◦C. Assume that Tw is close to 27◦C. Your table
should include results for vertical plates, horizontal cylinders,
spheres, and possibly additional geometries. Do not include
your calculations.

8.12 For what value of Pr is the condition

∂2u
∂y2

∣∣∣∣∣
y=0

= gβ(Tw − T∞)
ν

satisfied exactly in the Squire-Eckert b.l. solution? [Pr = 2.86.]

8.13 The overall heat transfer coefficient on the side of a particular
house 10 m in height is 2.5 W/m2K, excluding exterior convec-
tion. It is a cold, still winter night with Toutside = −30◦C and
Tinside air = 25◦C. What is h on the outside of the house? Is
external convection laminar or turbulent?

8.14 Consider Example 8.2. The sheets are mild steel, 2 m long and
6 mm thick. The bath is basically water at 60◦C, and the sheets
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are put in it at 18◦C. (a) Plot the sheet temperature as a function
of time. (b) Approximate h at ∆T = [(60+ 18)/2− 18]◦C and
plot the conventional exponential response on the same graph.

8.15 A vertical heater 0.15 m in height is immersed in water at 7◦C.
Ploth against (Tw−T∞)1/4, where Tw is the heater temperature,
in the range 0 < (Tw − T∞) < 100◦C. Comment on the result.
should the line be straight?

8.16 A 77◦C vertical wall heats 27◦C air. Evaluate δtop/L,RaL, and
L where the line in Fig. 8.3 ceases to be straight. Comment on
the implications of your results. [δtop/L � 0.6.]

8.17 A horizontal 8 cm O.D. pipe carries steam at 150◦C through
a room at 17◦C. The pipe has a 1.5 cm layer of 85% magnesia
insulation on it. Evaluate the heat loss per meter of pipe. [Q =
97.3 W/m.]

8.18 What heat rate (in W/m) must be supplied to a 0.01 mm hori-
zontal wire to keep it 30◦C above the 10◦C water around it?

8.19 A vertical run of copper tubing, 5 mm in diameter and 20 cm
long, carries condensation vapor at 60◦C through 27◦C air. What
is the total heat loss?

8.20 A body consists of two cones joined at their bases. The diame-
ter is 10 cm and the overall length of the joined cones is 25 cm.
The axis of the body is vertical, and the body is kept at 27◦C
in 7◦C air. What is the rate of heat removal from the body?
[Q = 3.38 W.]

8.21 Consider the plate dealt with in Example 8.3. Plot h as a func-
tion of the angle of inclination of the plate as the hot side is
tilted both upward and downward. Note that you must make
do with discontinuous formulas in different ranges of θ.

8.22 You have been asked to design a vertical wall panel heater,
1.5 m high, for a dwelling. What should the heat flux be if
no part of the wall should exceed 33◦C? How much heat will be
added to the room if the panel is 7 m in width?

8.23 A 14 cm high vertical surface is heated by condensing steam
at 1 atm. If the wall is kept at 30◦C, how would the average
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heat transfer coefficient change if methanol, CCl4, or acetone
were used instead of steam to heat it? How would the heat
flux change? (This problem requires that certain information
be obtained from sources outside this book.)

8.24 A 1 cm diameter tube extends 27 cm horizontally through a
region of saturated steam at 1 atm. The outside of the tube
can be maintained at any temperature between 50◦C and 150◦C.
Plot the total heat transfer as a function of tube temperature.

8.25 A 2 m high vertical plate condenses steam at 1 atm. Below what
temperature will Nusselt’s prediction of h be in error? Below
what temperature will the condensing film be turbulent?

8.26 A reflux condenser is made of copper tubing 0.8 cm in diameter
with a wall temperature of 30◦C. It condenses steam at 1 atm.
Find h if α = 18◦ and the coil diameter is 7 cm.

8.27 The coil diameter of a helical condenser is 5 cm and the tube
diameter is 5 mm. The condenser carries water at 15◦C and is
in a bath of saturated steam at 1 atm. Specify the number of
coils and a reasonable helix angle if 6 kg/hr of steam is to be
condensed. hinside = 600 W/m2K.

8.28 A schedule 40 type 304 stainless steam pipe with a 4 in. nomi-
nal diameter carries saturated steam at 150 psia in a processing
plant. Calculate the heat loss per unit length of pipe if it is bare
and the surrounding air is still at 68◦F. How much would this
heat loss be reduced if the pipe were insulated with a 1 in. layer
of 85% magnesia insulation? [Qsaved � 127 W/m.]

8.29 What is the maximum speed of air in the natural convection b.l.
in Example 8.1?

8.30 All of the uniform-Tw , natural convection formulas for Nu take
the same form, within a constant, at high Pr and Ra. What is
that form? (Exclude any equation that includes turbulence.)

8.31 A large industrial process requires that water be heated by a
large horizontal cylinder using natural convection. The water
is at 27◦C. The diameter of the cylinder is 5 m, and it is kept at
67◦C. First, find h. Then suppose that D is increased to 10 m.
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What is the new h? Explain the similarity of these answers in
the turbulent natural convection regime.

8.32 A vertical jet of liquid of diameter d and moving at velocity u∞
impinges on a horizontal disk rotating ω rad/s. There is no
heat transfer in the system. Develop an expression for δ(r),
where r is the radial coordinate on the disk. Contrast the r
dependence of δ with that of a condensing film on a rotating
disk and explain the difference qualitatively.

8.33 We have seen that if properties are constant, h ∝ ∆T 1/4 in
natural convection. If we consider the variation of properties
as Tw is increased over T∞, will h depend more or less strongly
on ∆T in air? in water?

8.34 A film of liquid falls along a vertical plate. It is initially satu-
rated and it is surrounded by saturated vapor. The film thick-
ness is δo. If the wall temperature below a certain point on
the wall (call it x = 0) is raised to a value of Tw , slightly above
Tsat, derive expressions for δ(x), Nux , and xf—the distance at
which the plate becomes dry. Calculate xf if the fluid is water
at 1 atm, if Tw = 105◦C and δo = 0.1 mm.

8.35 In a particular solar collector, dyed water runs down a vertical
plate in a laminar film with thickness δo at the top. The sun’s
rays pass through parallel glass plates (see Section 10.6) and
deposit qs W/m2 in the film. Assume the water to be saturated
at the inlet and the plate behind it to be insulated. Develop an
expression for δ(x) as the water evaporates. Develop an ex-
pression for the maximum length of wetted plate, and provide
a criterion for the laminar solution to be valid.

8.36 What heat removal flux can be achieved at the surface of a hori-
zontal 0.01 mm diameter electrical resistance wire in still 27◦C
air if its melting point is 927◦C? Neglect radiation.

8.37 A 0.03 m O.D. vertical pipe, 3 m in length, carries refrigerant
through a 24◦C room. How much heat does it absorb from the
room if the pipe wall is at 10◦C?

8.38 A 1 cm O.D. tube at 50◦C runs horizontally in 20◦C air. What
is the critical radius of 85% magnesium insulation on the tube?
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8.39 A 1 in. cube of ice is suspended in 20◦C air. Estimate the drip
rate in gm/min. (Neglect ∆T through the departing water film.
hsf = 333,300 J/kg.)

8.40 A horizontal electrical resistance heater, 1 mm in diameter, re-
leases 100 W/m in water at 17◦C. What is the wire temperature?

8.41 Solve Problem 5.39 using the correct formula for the heat trans-
fer coefficient.

8.42 A red-hot vertical rod, 0.02 m in length and 0.005 m in diameter,
is used to shunt an electrical current in air at room tempera-
ture. How much power can it dissipate if it melts at 1200◦C?
Note all assumptions and corrections. Include radiation using
Frod-room = 0.064.

8.43 A 0.25 mm diameter platinum wire, 0.2 m long, is to be held
horizontally at 1035◦C. It is black. How much electric power is
needed? Is it legitimate to treat it as a constant-wall-temperature
heater in calculating the convective part of the heat transfer?
The surroundings are at 20◦C and the surrounding room is vir-
tually black.

8.44 A vertical plate, 11.6 m long, condenses saturated steam at
1 atm. We want to be sure that the film stays laminar. What
is the lowest allowable plate temperature, and what is q at this
temperature?

8.45 A straight horizontal fin exchanges heat by laminar natural con-
vection with the surrounding air.

a. Show that

d2θ
dξ2

=m2L2θ5/4

where m is based on ho ≡ h(T = To).
b. Develop an iterative numerical method to solve this equa-

tion for T(x = 0) = To and an insulated tip. (Hint : lin-
earize the right side by writing it as (m2L2θ1/4)θ, and
evaluate the term in parenthesis at the previous iteration
step.)
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c. Solve the resulting difference equations for m2L2 values
ranging from 10−3 to 103. Use Gauss elimination or the
tridiagonal algorithm. Express the results as η/ηo where
η is the fin efficiency and ηo is the efficiency that would
result if ho were the uniform heat transfer coefficient over
the entire fin.

8.46 A 2.5 cm black sphere (F = 1) is in radiation-convection equi-
librium with air at 20◦C. The surroundings are at 1000 K. What
is the temperature of the sphere?

8.47 Develop expressions for h(D) and NuD during condensation
on a vertical circular plate.

8.48 A cold copper plate is surrounded by a 5 mm high ridge which
forms a shallow container. It is surrounded by saturated water
vapor at 100◦C. Estimate the steady heat flux and the rate of
condensation.

a. When the plate is perfectly horizontal and filled to over-
flowing with condensate.

b. When the plate is in the vertical position.

c. Did you have to make any idealizations? Would they result
in under- or over-estimation of the condensation?
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9. Heat transfer in boiling and
other phase-change
configurations

For a charm of powerful trouble,
like a Hell-broth boil and bubble.. . .

. . .Cool it with a baboon’s blood,
then the charm is firm and good.

Macbeth, Wm. Shakespeare

“A watched pot never boils”—the water in a teakettle takes a long time
to get hot enough to boil because natural convection initially warms it
rather slowly. Once boiling begins, the water is heated the rest of the way
to the saturation point very quickly. Boiling is of interest to us because
it is remarkably effective in carrying heat from a heater into a liquid. The
heater in question might be a red-hot horseshoe quenched in a bucket or
the core of a nuclear reactor with coolant flowing through it. Our aim is to
learn enough about the boiling process to design systems that use boiling
for cooling. We begin by considering pool boiling—the boiling that occurs
when a stationary heater transfers heat to an otherwise stationary liquid.

9.1 Nukiyama’s experiment and the pool boiling curve

Hysteresis in the q vs. ∆T relation for pool boiling

In 1934, Nukiyama [9.1] did the experiment described in Fig. 9.1. He
boiled saturated water on a horizontal wire that functioned both as an
electric resistance heater and as a resistance thermometer. By calibrating

421
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Figure 9.1 Nukiyama’s boiling hysteresis loop.

the resistance of a Nichrome wire as a function of temperature before the
experiment, he was able to obtain both the heat flux and the temperature
using the observed current and voltage. He found that, as he increased
the power input to the wire, the temperature of the wire rose sharply
but the heat flux increased relatively little. Suddenly, at a particular high
value of the heat flux, the wire abruptly melted. Nukiyama then obtained
a platinum wire and tried again. This time the wire reached the same



§9.1 Nukiyama’s experiment and the pool boiling curve 423

limiting heat flux, but then it turned almost white-hot without melting.
As he reduced the power input to the white-hot wire, the temperature

dropped in a continuous way, as shown in Fig. 9.1, until the heat flux was
far below the value where the first temperature jump occurred. Then
the temperature dropped abruptly to the original q vs. ∆T = (Twire −
Tsat) curve, as shown. Nukiyama suspected that the hysteresis would not
occur if ∆T could be specified as the independent controlled variable. He
conjectured that such an experiment would result in the connecting line
shown between the points where the temperatures jumped.

In 1937, Drew and Mueller [9.2] succeeded in making ∆T the inde-
pendent variable by boiling organic liquids outside a tube. Steam was
allowed to condense inside the tube at an elevated pressure. The steam
saturation temperature—and hence the tube-wall temperature—was var-
ied by controlling the steam pressure. This permitted them to obtain a
few scattered data that seemed to bear out Nukiyama’s conjecture. Mea-
surements of this kind are inherently hard to make accurately. For the
next forty years, the relatively few nucleate boiling data that people ob-
tained were usually—and sometimes imaginatively—interpreted as veri-
fying Nukiyama’s suggestion that this part of the boiling curve is contin-
uous.

Figure 9.2 is a completed boiling curve for saturated water at atmo-
spheric pressure on a particular flat horizontal heater. It displays the
behavior shown in Fig. 9.1, but it has been rotated to place the indepen-
dent variable, ∆T , on the abscissa. (We represent Nukiyama’s connecting
region as two unconnected extensions of the neighboring regions for rea-
sons that we explain subsequently.)

Modes of pool boiling

The boiling curve in Fig. 9.2 has been divided into five regimes of behav-
ior. These regimes, and the transitions that divide them, are discussed
next.

Natural convection. Water that is not in contact with its own vapor does
not boil at the so-called normal boiling point,1 Tsat. Instead, it continues
to rise in temperature until bubbles finally to begin to form. On conven-
tional machined metal surfaces, this occurs when the surface is a few
degrees above Tsat. Below the bubble inception point, heat is removed
by natural convection, and it can be predicted by the methods laid out in
Chapter 8.

1This notion might be new to some readers. It is explained in Section 9.2.
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Figure 9.2 Typical boiling curve and
regimes of boiling for an unspecified
heater surface.

Nucleate boiling. The nucleate boiling regime embraces the two distinct
regimes that lie between bubble inception and Nukiyama’s first transition
point:

1. The region of isolated bubbles. In this range, bubbles rise from iso-
lated nucleation sites, more or less as they are sketched in Fig. 9.1.
As q and ∆T increase, more and more sites are activated. Fig-
ure 9.3a is a photograph of this regime as it appears on a horizontal
plate.

2. The region of slugs and columns. When the active sites become
very numerous, the bubbles start to merge into one another, and an
entirely different kind of vapor escape path comes into play. Vapor
formed at the surface merges immediately into jets that feed into
large overhead bubbles or “slugs” of vapor. This process is shown
as it occurs on a horizontal cylinder in Fig. 9.3b.
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Peak heat flux. Clearly, it is very desirable to be able to operate heat ex-
change equipment at the upper end of the region of slugs and columns.
Here the temperature difference is low while the heat flux is very high.
Heat transfer coefficients in this range are enormous. However, it is very
dangerous to run equipment near qmax in systems for which q is the inde-
pendent variable (as in nuclear reactors). If q is raised beyond the upper
limit of the nucleate boiling regime, such a system will suffer a sudden
and damaging increase of temperature. This transition2 is known by a
variety of names: the burnout point (although a complete burning up or
melting away does not always accompany it); the peak heat flux (a modest
descriptive term); the boiling crisis (a Russian term); the DNB, or depar-
ture from nucleate boiling, and the CHF, or critical heat flux (terms more
often used in flow boiling); and the first boiling transition (which term
ignores previous transitions). We designate the peak heat flux as qmax.

Transitional boiling regime. It is a curious fact that the heat flux ac-
tually diminishes with ∆T after qmax is reached. In this regime the ef-
fectiveness of the vapor escape process becomes worse and worse. Fur-
thermore, the hot surface becomes completely blanketed in vapor and q
reaches a minimum heat flux which we call qmin. Figure 9.3c shows two
typical instances of transitional boiling just beyond the peak heat flux.

Film boiling. Once a stable vapor blanket is established, q again in-
creases with increasing ∆T . The mechanics of the heat removal process
during film boiling, and the regular removal of bubbles, has a great deal
in common with film condensation, but the heat transfer coefficients are
much lower because heat must be conducted through a vapor film instead
of through a liquid film. We see an instance of film boiling in Fig. 9.3d.

Experiment 9.1

Set an open pan of cold tap water on your stove to boil. Observe the
following stages as you watch:

• At first nothing appears to happen; then you notice that numerous
small, stationary bubbles have formed over the bottom of the pan.
These bubbles have nothing to do with boiling—they contain air
that was driven out of solution as the temperature rose.

2We defer a proper physical explanation of the transition to Section 9.3.
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• Suddenly the pan will begin to “sing.” There will be a somewhat
high-pitched buzzing-humming sound as the first vapor bubbles
are triggered. They grow at the heated surface and condense very
suddenly when their tops encounter the still-cold water above them.
This cavitation collapse is accompanied by a small “ping” or “click,”
over and over, as the process is repeated at a fairly high frequency.

• As the temperature of the liquid bulk rises, the singing is increas-
ingly muted. You may then look in the pan and see a number
of points on the bottom where a feathery blur appears to be af-
fixed. These blurred images are bubble columns emanating scores
of bubbles per second. The bubbles in these columns condense
completely at some distance above the surface. Notice that the air
bubbles are all gradually being swept away.

• The “singing” finally gives way to a full rolling boil, accompanied
by a gentle burbling sound. Bubbles no longer condense but now
reach the surface, where they break.

• A full rolling-boil process, in which the liquid bulk is saturated, is
a kind of isolated-bubble process, as plotted in Fig. 9.2. No kitchen
stove supplies energy fast enough to boil water in the slugs-and-
columns regime. You might, therefore, reflect on the relative inten-
sity of the slugs-and-columns process.

Experiment 9.2

Repeat Experiment 54 with a glass beaker instead of a kitchen pan.
Place a strobe light, blinking about 6 to 10 times per second, behind the
beaker with a piece of frosted glass or tissue paper between it and the
beaker. You can now see the evolution of bubble columns from the first
singing mode up to the rolling boil. You will also be able to see natural
convection in the refraction of the light before boiling begins.



428 Heat transfer in boiling and other phase-change configurations §9.2

Figure 9.4 Enlarged sketch of a typical metal surface.

9.2 Nucleate boiling

Inception of boiling

Figure 9.4 shows a highly enlarged sketch of a heater surface. Most metal-
finishing operations score tiny grooves on the surface, but they also typ-
ically involve some chattering or bouncing action, which hammers small
holes into the surface. When a surface is wetted, liquid is prevented by
surface tension from entering these holes, so small gas or vapor pockets
are formed. These little pockets are the sites at which bubble nucleation
occurs.

To see why vapor pockets serve as nucleation sites, consider Fig. 9.5.
Here we see the problem in highly idealized form. Suppose that a spher-
ical bubble of pure saturated steam is at equilibrium with an infinite
superheated liquid. To determine the size of such a bubble, we impose
the conditions of mechanical and thermal equilibrium.

The bubble will be in mechanical equilibrium when the pressure dif-
ference between the inside and the outside of the bubble is balanced by
the forces of surface tension, σ , as indicated in the cutaway sketch in
Fig. 9.5. Since thermal equilibrium requires that the temperature must
be the same inside and outside the bubble, and since the vapor inside
must be saturated at Tsup because it is in contact with its liquid, the
force balance takes the form

Rb = 2σ(
psat at Tsup

)− pambient
(9.1)

The p–v diagram in Fig. 9.5 shows the state points of the internal
vapor and external liquid for a bubble at equilibrium. Notice that the
external liquid is superheated to (Tsup−Tsat) K above its boiling point at
the ambient pressure; but the vapor inside, being held at just the right
elevated pressure by surface tension, is just saturated.
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Figure 9.5 The conditions required for simultaneous mechan-
ical and thermal equilibrium of a vapor bubble.

Physical Digression 9.1

The surface tension of water in contact with its vapor is given with
great accuracy by [9.3]:

σwater = 235.8
(

1− Tsat

Tc

)1.256 [
1− 0.625

(
1− Tsat

Tc

)]
mN
m

(9.2a)

where both Tsat and the thermodynamical critical temperature, Tc =
647.096 K, are expressed in K. The units of σ are millinewtons (mN)
per meter. Table 9.1 gives additional values of σ for several substances.

Equation 9.2a is a specialized refinement of a simple, but quite ac-
curate and widely-used, semi-empirical equation for correlating surface



Table 9.1 Surface tension for various substances from the
collection of Jasper [9.4]a

Temperature σ = a− bT (◦C)
Substance

Range (◦C)
σ (mN/m)

a(mN/m) b (mN/m·◦C)

Acetone 25 to 50 26.26 0.112
Ammonia −70 42.39

−60 40.25
−50 37.91
−40 35.38

Aniline 15 to 90 44.83 0.1085
Benzene 10 30.21

30 27.56
50 24.96
70 22.40

Butyl alcohol 10 to 100 27.18 0.08983
Carbon dioxide −30 10.08

−10 6.14
10 2.67
30 0.07

Carbon tetrachloride 15 to 105 29.49 0.1224
Cyclohexanol 20 to 100 35.33 0.0966
Ethyl alcohol 10 to 100 24.05 0.0832
Ethylene glycol 20 to 140 50.21 0.089
Hydrogen −258 2.80

−255 2.29
−253 1.95

Isopropyl alcohol 10 to 100 22.90 0.0789
Mercury 5 to 200 490.6 0.2049
Methane 90 18.877

100 16.328
115 12.371

Methyl alcohol 10 to 60 24.00 0.0773
Naphthalene 100 to 200 42.84 0.1107
Nicotine −40 to 90 41.07 0.1112
Nitrogen −195 to −183 26.42 0.2265
Octane 10 to 120 23.52 0.09509
Oxygen −202 to −184 −33.72 −0.2561
Pentane 10 to 30 18.25 0.11021
Toluene 10 to 100 30.90 0.1189
Water 10 to 100 75.83 0.1477

Carbon dioxide −56 to 31 σ = 75.00 [1− (T (K)/304.26)]1.25

CFC-12 (R12) [9.5] −148 to 112 σ = 56.52 [1− (T (K)/385.01)]1.27

HCFC-22 (R22) [9.5] −158 to 96 σ = 61.23 [1− (T (K)/369.32)]1.23

a The function σ = σ(T) is not really linear, but Jasper was able to linearize it over
modest ranges of temperature [e.g., compare the water equation above with eqn. (9.2a)].
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tension:

σ = σo
(
1− Tsat

/
Tc

)11/9
(9.2b)

We include correlating equations of this form for CO2, R12, and R22 at
the bottom of Table 9.1. Equations of this general form are discussed in
Reference [9.6].

It is easy to see that the equilibrium bubble, whose radius is described
by eqn. (9.1), is unstable. If its radius is less than this value, surface
tension will overbalance [psat(Tsup) − pambient]. Thus, vapor inside will
condense at this higher pressure and the bubble will collapse. If the
bubble radius is slightly larger than the equation specifies, liquid at the
interface will evaporate and the bubble will begin to grow.

Thus, as the heater surface temperature is increased, higher and higher
values of [psat(Tsup)−pambient]will result and the equilibrium radius, Rb,
will decrease in accordance with eqn. (9.1). It follows that smaller and
smaller vapor pockets will be triggered into active bubble growth as the
temperature is increased. As an approximation, we can use eqn. (9.1) to
specify the radius of those vapor pockets that become active nucleation
sites. More accurate estimates can be made using Hsu’s [9.7] bubble in-
ception theory, the subsequent work by Rohsenow and his coworkers
(see, e.g., [9.8, Chap. 13]), or the still more recent technical literature.

Example 9.1

Estimate the approximate size of active nucleation sites in water at
1 atm on a wall superheated by 8 K and by 16 K. This is roughly in
the regime of isolated bubbles indicated in Fig. 9.2.

Solution. psat = 1.203× 105 N/m2 at 108◦C and 1.769× 105 N/m2

at 116◦C, and σ is given as 57.36 mN/m at Tsat = 108◦C and as
55.78 mN/m at Tsat = 116◦C by eqn. (9.2a). Then, at 108◦C, Rb from
eqn. (9.1) is

Rb = 2(57.36× 10−3) N/m(
1.203× 105 − 1.013× 105

)
N/m2

and similarly for 116◦C, so the radius of active nucleation sites is on
the order of

Rb = 0.0060 mm at T = 108◦C or 0.0015 mm at 116◦C
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This means that active nucleation sites would be holes with diameters
very roughly on the order of magnitude of 0.005 mm or 5µm—at least
on the heater represented by Fig. 9.2. That is within the range of
roughness of commercially finished surfaces.

Region of isolated bubbles

The mechanism of heat transfer enhancement in the isolated bubble
regime was hotly argued in the years following World War II. A few con-
clusions have emerged from that debate, and we shall attempt to identify
them. There is little doubt that bubbles act in some way as small pumps
that keep replacing liquid heated at the wall with cool liquid. The ques-
tion is that of specifying the correct mechanism. Figure 9.6 shows the
way bubbles probably act to remove hot liquid from the wall and intro-
duce cold liquid to be heated.

It is apparent that the number of active nucleation sites generating
bubbles will strongly influence q. On the basis of his experiments, Yam-
agata showed in 1955 (see, e.g., [9.9]) that

q ∝ ∆Tanb (9.3)

where ∆T ≡ Tw −Tsat and n is the site density or number of active sites
per square meter. A great deal of subsequent work has been done to
fix the constant of proportionality and the constant exponents, a and b.
The exponents turn out to be approximately a = 1.2 and b = 1

3 .
The problem with eqn. (9.3) is that it introduces what engineers call

a nuisance variable. A nuisance variable is one that varies from system
to system and cannot easily be evaluated—the site density, n, in this
case. Normally, n increases with ∆T in some way, but how? If all sites
were identical in size, all sites would be activated simultaneously, and q
would be a discontinuous function of ∆T . When the sites have a typical
distribution of sizes, n (and hence q) can increase very strongly with ∆T .

It is a lucky fact that for a large class of factory-finished materials, n
varies approximately as ∆T 5 or 6, so q varies roughly as ∆T 3. This has
made it possible for various authors to correlate q approximately for a
large variety of materials. One of the first and most useful correlations
for nucleate boiling was that of Rohsenow [9.10] in 1952. It is

cp (Tw − Tsat)
hfg Prs

= Csf

[
q

µhfg

√
σ

g
(
ρf − ρg

)
]0.33

(9.4)
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A bubble growing and departing in saturated liquid.
The bubble grows, absorbing heat from the
superheated liquid on its periphery. As it leaves, it
entrains cold liquid onto the plate which then warms
up until nucleation occurs and the cycle repeats.

A bubble growing in subcooled liquid.
When the bubble protrudes into cold
liquid, steam can condense on the top
while evaporation continues on the
bottom. This provides a short-circuit for
cooling the wall. Then, when the bubble
caves in, cold liquid is brought to the wall.

Figure 9.6 Heat removal by bubble action during boiling. Dark
regions denote locally superheated liquid.

where all properties, unless otherwise noted, are for liquid at Tsat. The
constant Csf is an empirical correction for typical surface conditions.
Table 9.2 includes a set of values of Csf for common surfaces (taken
from [9.10]) as well as the Prandtl number exponent, s. A more extensive
compilation of these constants was published by Pioro in 1999 [9.11].

We noted, initially, that there are two nucleate boiling regimes, and
the Yamagata equation (9.3) applies only to the first of them. Rohsenow’s
equation is frankly empirical and does not depend on the rational anal-
ysis of either nucleate boiling process. It turns out that it represents
q(∆T) in both regimes, but it is not terribly accurate in either one. Fig-
ure 9.7 shows Rohsenow’s original comparison of eqn. (9.4) with data for
water over a large range of conditions. It shows typical errors in heat
flux of 100% and typical errors in ∆T of about 25%.

Thus, our ability to predict the nucleate pool boiling heat flux is poor.
Our ability to predict ∆T is better because, with q ∝ ∆T 3, a large error
in q gives a much smaller error in ∆T . It appears that any substantial
improvement in this situation will have to wait until someone has man-
aged to deal realistically with the nuisance variable, n. Current research
efforts are dealing with this matter, and we can simply hope that such
work will eventually produce a method for achieving reliable heat trans-
fer design relationships for nucleate boiling.
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Table 9.2 Selected values of the surface correction factor for
use with eqn. (9.4) [9.10]

Surface–Fluid Combination Csf s

Water–nickel 0.006 1.0
Water–platinum 0.013 1.0
Water–copper 0.013 1.0
Water–brass 0.006 1.0
CCl4–copper 0.013 1.7
Benzene–chromium 0.010 1.7
n-Pentane–chromium 0.015 1.7
Ethyl alcohol–chromium 0.0027 1.7
Isopropyl alcohol–copper 0.0025 1.7
35% K2CO3–copper 0.0054 1.7
50% K2CO3–copper 0.0027 1.7
n-Butyl alcohol–copper 0.0030 1.7

It is indeed fortunate that we do not often have to calculate q, given
∆T , in the nucleate boiling regime. More often, the major problem is
to avoid exceeding qmax. We turn our attention in the next section to
predicting this limit.

Example 9.2

What is Csf for the heater surface in Fig. 9.2?

Solution. From eqn. (9.4) we obtain

q
∆T 3

C3
sf =

µc3
p

h2
fgPr3

√
g
(
ρf − ρg

)
σ

where, since the liquid is water, we take s to be 1.0. Then, for water at
Tsat = 100◦C: cp = 4.22 kJ/kg·K, Pr = 1.75, (ρf − ρg) = 958 kg/m3,
σ = 0.0589 N/m or kg/s2, hfg = 2257 kJ/kg, µ = 0.000282 kg/m·s.
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Figure 9.7 Illustration of
Rohsenow’s [9.10] correlation applied to
data for water boiling on
0.61 mm diameter platinum wire.

Thus,

q
∆T 3

C3
sf = 3.10× 10−7 kW

m2K3

At q = 800 kW/m2, we read ∆T = 22 K from Fig. 9.2. This gives

Csf =
[

3.10× 10−7(22)3

800

]1/3

= 0.016

This value compares favorably with Csf for a platinum or copper sur-
face under water.
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9.3 Peak pool boiling heat flux

Transitional boiling regime and Taylor instability

It will help us to understand the peak heat flux if we first consider the
process that connects the peak and the minimum heat fluxes. During
high heat flux transitional boiling, a large amount of vapor is glutted
about the heater. It wants to buoy upward, but it has no clearly defined
escape route. The jets that carry vapor away from the heater in the re-
gion of slugs and columns are unstable and cannot serve that function in
this regime. Therefore, vapor buoys up in big slugs—then liquid falls in,
touches the surface briefly, and a new slug begins to form. Figure 9.3c
shows part of this process.

The high and low heat flux transitional boiling regimes are different
in character. The low heat flux region does not look like Fig. 9.2c but is al-
most indistinguishable from the film boiling shown in Fig. 9.2d. However,
both processes display a common conceptual key: In both, the heater is
almost completely blanketed with vapor. In both, we must contend with
the unstable configuration of a liquid on top of a vapor.

Figure 9.8 shows two commonplace examples of such behavior. In
either an inverted honey jar or the water condensing from a cold water
pipe, we have seen how a heavy fluid falls into a light one (water or honey,
in this case, collapses into air). The heavy phase falls down at one node
of a wave and the light fluid rises into the other node.

The collapse process is called Taylor instability after G. I. Taylor, who
first predicted it. The so-called Taylor wavelength, λd, is the length of
the wave that grows fastest and therefore predominates during the col-
lapse of an infinite plane horizontal interface. It can be predicted using
dimensional analysis. The dimensional functional equation for λd is

λd = fn
[
σ,g

(
ρf − ρg

)]
(9.5)

since the wave is formed as a result of the balancing forces of surface
tension against inertia and gravity. There are three variables involving m
and kg/s2, so we look for just one dimensionless group:

λd

√
g
(
ρf − ρg

)
σ

= constant

This relationship was derived analytically by Bellman and Pennington [9.12]
for one-dimensional waves and by Sernas [9.13] for the two-dimensional
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a. Taylor instability in the surface of the honey
in an inverted honey jar

b. Taylor instability in the interface of the water condensing on
the underside of a small cold water pipe.

Figure 9.8 Two examples of Taylor instabilities that one might
commonly experience.

waves that actually occur in a plane horizontal interface. The results
were

λd

√
g
(
ρf − ρg

)
σ

=
{

2π
√

3 for one-dimensional waves

2π
√

6 for two-dimensional waves
(9.6)
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Experiment 9.3

Hang a metal rod in the horizontal position by threads at both ends.
The rod should be about 30 cm in length and perhaps 1 to 2 cm in diam-
eter. Pour motor oil or glycerin in a narrow cake pan and lift the pan up
under the rod until it is submerged. Then lower the pan and watch the
liquid drain into it. Take note of the wave action on the underside of the
rod. The same thing can be done in an even more satisfactory way by
running cold water through a horizontal copper tube above a beaker of
boiling water. The condensing liquid will also come off in a Taylor wave
such as is shown in Fig. 9.8. In either case, the waves will approximate
λd1 (the length of a one-dimensional wave, since they are arrayed on a
line), but the wavelength will be influenced by the curvature of the rod.

Throughout the transitional boiling regime, vapor rises into liquid on
the nodes of Taylor waves, and at qmax this rising vapor forms into jets.
These jets arrange themselves on a staggered square grid, as shown in
Fig. 9.9. The basic spacing of the grid is λd2 (the two-dimensional Taylor
wavelength). Since

λd2 =
√

2λd1 (9.7)

[recall eqn. (9.6)], the spacing of the most basic module of jets is actually
λd1 , as shown in Fig. 9.9.

Next we must consider how the jets become unstable at the peak, to
bring about burnout.

Helmholtz instability of vapor jets

Figure 9.10 shows a commonplace example of what is called Helmholtz
instability. This is the phenomenon that causes the vapor jets to cave in
when the vapor velocity in them reaches a critical value. Any flag in a
breeze will constantly be in a state of collapse as the result of relatively
high pressures where the velocity is low and relatively low pressures
where the velocity is high, as is indicated in the top view.

This same instability is shown as it occurs in a vapor jet wall in
Fig. 9.11. This situation differs from the flag in one important partic-
ular. There is surface tension in the jet walls, which tends to balance the
flow-induced pressure forces that bring about collapse. Thus, while the
flag is unstable in any breeze, the vapor velocity in the jet must reach a
limiting value, ug , before the jet becomes unstable.



a. Plan view of bubbles rising from surface

b. Waveform underneath the bubbles shown in a.

Figure 9.9 The array of vapor jets as seen on an infinite hori-
zontal heater surface.

439
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Figure 9.10 The flapping of a flag due to Helmholtz instability.

Lamb [9.14] gives the following relation between the vapor flow ug ,
shown in Fig. 9.11, and the wavelength of a disturbance in the jet wall,
λH :

ug =
√

2πσ
ρgλH

(9.8)

[This result, like eqn. (9.6), can be predicted within a constant using
dimensional analysis. See Problem 9.19.] A real liquid–vapor interface
will usually be irregular, and therefore it can be viewed as containing all
possible sinusoidal wavelengths superposed on one another. One prob-
lem we face is that of guessing whether or not one of those wavelengths
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Figure 9.11 Helmholtz instability of vapor jets.

will be better developed than the others and therefore more liable to
collapse.

Example 9.3

Saturated water at 1 atm flows down the periphery of the inside of a
10 cm I.D. vertical tube. Steam flows upward in the center. The wall of
the pipe has circumferential corrugations in it, with a 4 cm wavelength
in the axial direction. Neglect problems raised by curvature and the
finite thickness of the liquid, and estimate the steam velocity required
to destabilize the liquid flow over these corrugations, assuming that
the liquid moves slowly.

Solution. The flow will be Helmholtz-stable until the steam velocity
reaches the value given by eqn. (9.8):

ug =
√

2π(0.0589)
0.577(0.04 m)

Thus, the maximum stable steam velocity would be ug = 4 m/s.
Beyond that, the liquid will form whitecaps and be blown back
upward.
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Example 9.4

Capillary forces hold mercury in place between two parallel steel plates
with a lid across the top. The plates are slowly pulled apart until the
mercury interface collapses. Approximately what is the maximum
spacing?

Solution. The mercury is most susceptible to Taylor instability
when the spacing reaches the wavelength given by eqn. (9.6):

λd1 = 2π
√

3

√
σ

g(ρf − ρg)
= 2π

√
3

√
0.487

9.8(13600)
= 0.021 m = 2.1 cm

(Actually, this spacing would give the maximum rate of collapse. It
can be shown that collapse would begin at 1

/√
3 times this value, or

at 1.2 cm.)

Prediction of qmax

General expression for qmax The heat flux must be balanced by the
latent heat carried away in the jets when the liquid is saturated. Thus,
we can write immediately

qmax = ρghfgug

(Aj

Ah

)
(9.9)

where Aj is the cross-sectional area of a jet and Ah is the heater area that
supplies each jet.

For any heater configuration, two things must be determined. One
is the length of the particular disturbance in the jet wall, λH , which will
trigger Helmholtz instability and fix ug in eqn. (9.8) for use in eqn. (9.9).
The other is the ratio Aj

/
Ah. The prediction of qmax in any pool boiling

configuration always comes down to these two problems.

qmax on an infinite horizontal plate. The original analysis of this type
was done by Zuber in his doctoral dissertation at UCLA in 1958 (see [9.15]).
He first guessed that the jet radius was λd1

/
4. This guess has received

corroboration by subsequent investigators, and (with reference to Fig. 9.9)
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it gives

Aj

Ah
= cross-sectional area of circular jet

area of the square portion of the heater that feeds the jet

= π(λd1/4)2

(λd1)2
= π

16
(9.10)

Lienhard and Dhir ([9.16, 9.17, 9.18]) guessed that the Helmholtz-unstable
wavelength might be equal to λd1 , so eqn. (9.9) became

qmax = ρghfg

√√√√2πσ
ρg

1

2π
√

3

√
g(ρf − ρg)

σ
× π

16

or3

qmax = 0.149 ρ1/2
g hfg 4

√
g(ρf − ρg)σ (9.11)

Equation (9.11) is compared with available data for large flat heaters,
with vertical sidewalls to prevent any liquid sideflow, in Fig. 9.12. So
long as the diameter or width of the heater is more than about 3λd1 , the
prediction is quite accurate. When the width or diameter is less than
this, there is a small integral number of jets on a plate which may be
larger or smaller in area than 16/π per jet. When this is the case, the
actual qmax may be larger or smaller than that predicted by eqn. (9.11)
(see Problem 9.13).

The form of the preceding prediction is usually credited to Kutate-
ladze [9.19] and Zuber [9.15]. Kutateladze (then working in Leningrad
and later director of the Heat Transfer Laboratory near Novosibirsk, Sib-
eria) recognized that burnout resembled the flooding of a distillation
column. At any level in a distillation column, alcohol-rich vapor (for ex-
ample) rises while water-rich liquid flows downward in counterflow. If
the process is driven too far, the flows become Helmholtz-unstable and
the process collapses. The liquid then cannot move downward and the
column is said to “flood.”

Kutateladze did the dimensional analysis of qmax based on the flood-
ing mechanism and obtained the following relationship, which, lacking a
characteristic length and being of the same form as eqn. (9.11), is really
valid only for an infinite horizontal plate:

qmax = C ρ1/2
g hfg 4

√
g
(
ρf − ρg

)
σ

3Readers are reminded that n√x ≡ x1/n.
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Figure 9.12 Comparison of the qmax prediction for infinite
horizontal heaters with data reported in [9.16].

He then suggested that C was equal to 0.131 on the basis of data from
configurations other than infinite flat plates (horizontal cylinders, for ex-
ample). Zuber’s analysis yielded C = π/24 = 0.1309, which was quite
close to Kutateladze’s value but lower by 14% than eqn. (9.11). We there-
fore designate the Zuber-Kutateladze prediction as qmaxz . However, we
shall not use it directly, since it does not predict any actual physical con-
figuration.

qmaxz ≡ 0.131 ρ1/2
g hfg 4

√
g
(
ρf − ρg

)
σ (9.12)

It is very interesting that C. F. Bonilla, whose qmax experiments in the
early 1940s are included in Fig. 9.12, also suggested that qmax should
be compared with the column-flooding mechanism. He presented these
ideas in a paper, but A. P. Colburn wrote to him: “A correlation [of the
flooding velocity plots with] boiling data would not serve any great pur-
pose and would perhaps be very misleading.” And T. H. Chilton—another
eminent chemical engineer of that period—wrote to him: “I venture to
suggest that you delete from the manuscript…the relationship between
boiling rates and loading velocities in packed towers.” Thus, the technical
conservativism of the period prevented the idea from gaining acceptance
for another decade.
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Example 9.5

Predict the peak heat flux for Fig. 9.2.

Solution. We use eqn. (9.11) to evaluate qmax for water at 100◦C on
an infinite flat plate:

qmax = 0.149 ρ1/2
g hfg 4

√
g(ρf − ρg)σ

= 0.149(0.597)1/2(2,257,000) 4
√

9.8(958.2− 0.6)(0.0589)

= 1.260× 106 W/m2

= 1.260 MW/m2

Figure 9.2 shows qmax � 1.160 MW/m2, which is less by only about
8%.

Example 9.6

What is qmax in mercury on a large flat plate at 1 atm?

Solution. The normal boiling point of mercury is 355◦C. At this tem-
perature, hfg = 292,500 J/kg, ρf = 13,400 kg/m3, ρg = 4.0 kg/m3,
and σ � 0.418 kg/s2, so

qmax = 0.149(4.0)1/2(292,500) 4
√

9.8(13,400− 4)(0.418)

= 1.334 MW/m2

The result is very close to that for water. The increases in density and
surface tension have been compensated by a much lower latent heat.

Peak heat flux in other pool boiling configurations

The prediction of qmax in configurations other than an infinite flat heater
will involve a characteristic length, L. Thus, the dimensional functional
equation for qmax becomes

qmax = fn
[
ρg,hfg,σ , g

(
ρf − ρg

)
, L

]
which involves six variables and four dimensions: J, m, s, and kg, and
kg, where, once more in accordance with Section 4.3, we note that no
significant conversion from work to heat is occurring so that J must be
retained as a separate unit. There are thus two pi-groups. The first group
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can arbitrarily be multiplied by 24/π to give

Π1 = qmax

(π/24)ρ1/2
g hfg 4

√
σg(ρf − ρg)

= qmax

qmaxz
(9.13)

Notice that the factor of 24/π has served to make the denominator equal
to qmaxz (Zuber’s expression for qmax). Thus, for qmax on a flat plate, Π1

equals 0.149/0.131, or 1.14. The second pi-group is

Π2 = L√
σ
/
g(ρf − ρg)

= 2π
√

3
L
λd1

≡ L′ (9.14)

The latter group, Π2, is the square root of the Bond number, Bo, which is
used to compare buoyant force with capillary forces.

Predictions and correlations of qmax have been made for several finite
geometries in the form

qmax

qmaxz
= fn

(
L′

)
(9.15)

The dimensionless characteristic length in eqn. (9.15) might be a dimen-
sionless radius (R′), a dimensionless diameter (D′), or a dimensionless
height (H′). The graphs in Fig. 9.13 are comparisons of several of the
existing predictions and correlations with experimental data. These pre-
dictions and others are listed in Table 9.3. Notice that the last three items
in Table 9.3 (10, 11, and 12) are general expressions from which several
of the preceding expressions in the table can be obtained.

The equations in Table 9.3 are all valid within ±15% or 20%, which is
very little more than the inherent scatter of qmax data. However, they are
subject to the following conditions:

• The bulk liquid is saturated.

• There are no pathological surface imperfections.

• There is no forced convection.

Another limitation on all the equations in Table 9.3 is that neither the
size of the heater nor the relative force of gravity can be too small. When
L′ < 0.15 in most configurations, the Bond number is

Bo ≡ L′2 = g(ρf − ρg)L3

σL
= buoyant force

capillary force
<

1
44

In this case, the process becomes completely dominated by surface ten-
sion and the Taylor-Helmholtz wave mechanisms no longer operate. As
L′ is reduced, the peak and minimum heat fluxes cease to occur and the



Figure 9.13 The peak pool boiling heat flux on several heaters.
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boiling curve becomes monotonic. When nucleation occurs on a very
small wire, the wire is immediately enveloped in vapor and the mech-
anism of heat removal passes directly from natural convection to film
boiling.

Example 9.7

A spheroidal metallic body of surface area 400 cm2 and volume 600
cm3 is quenched in saturated water at 1 atm. What is the most rapid
rate of heat removal during the quench?

Solution. As the cooling process progresses, it goes through the
boiling curve from film boiling, through qmin, up the transitional boil-
ing regime, through qmax, and down the nucleate boiling curve. Cool-
ing is finally completed by natural convection. One who has watched
the quenching of a red-hot horseshoe will recall the great gush of
bubbling that occurs as qmax is reached. We therefore calculate the
required heat flow as Q = qmaxAspheroid, where qmax is given by eqn.
(9.25) in Table 9.3:

qmax = 0.9 qmaxz = 0.9(0.131)ρ1/2
g hfg 4

√
gσ(ρf − ρg)

so

Q =
[

0.9(0.131)(0.597)1/2(2,257,000) 4
√

9.8(0.0589)(958) W/m2
]

×
(

400× 10−4 m2
)

or

Q = 39,900 W or 39.9 kW

This is a startingly large rate of energy removal for such a small object.
To complete the calculation, it is necessary to check whether or

not R′ is large enough to justify the use of eqn. (9.25):

R′ = V/A√
σ/g(ρf − ρg)

= 0.0006
0.04

√
9.8(958)
0.0589

= 6.0

This is larger than the specified lower bound of about 4.
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9.4 Film boiling

Film boiling bears an uncanny similarity to film condensation. The simi-
larity is so great that in 1950, Bromley [9.22] was able to use the eqn. (8.63)
for condensation on cylinders—almost directly—to predict film boiling
from cylinders. He observed that the boundary condition (∂u/∂y)y=δ =
0 at the liquid–vapor interface in film condensation would have to change
to something in between (∂u/∂y)y=δ = 0 and u(y = δ) = 0 during film
boiling. The reason is that the external liquid is not so easily set into
motion. He then redid the film condensation analysis, merely changing
k and ν from liquid to vapor properties. The change of boundary con-
ditions gave eqn. (8.63) with the constant changed from 0.729 to 0.512
and with k and ν changed to vapor values. By comparing the equation
with experimental data, he fixed the constant at the intermediate value
of 0.62. Thus, NuD based on kg became

NuD = 0.62


(ρf − ρg)gh′fgD

3

νgkg(Tw − Tsat)


1/4

(9.28)

where vapor and liquid properties should be evaluated at Tsat + ∆T/2
and at Tsat, respectively. The latent heat correction in this case is similar
in form to that for film condensation, but with different constants in it.
Sadasivan and Lienhard [9.23] have shown it to be

h′fg = hfg
[
1+ (

0.968− 0.163
/
Pr

)
Ja

]
(9.29)

Dhir and Lienhard [9.24] did the same thing for spheres, as Bromley
did for cylinders, 20 years later. Their result [cf. eqn. (8.64)] was

NuD = 0.67


(ρf − ρg)gh′fgD

3

νgkg(Tw − Tsat)


1/4

(9.30)

The preceding expressions are based on heat transfer by convection
through the vapor film, alone. However, when film boiling occurs much
beyond qmin in water, the heater glows dull cherry-red to white-hot. Ra-
diation in such cases can be enormous. One’s first temptation might
be simply to add a radiation heat transfer coefficient, hrad to hboiling as
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obtained from eqn. (9.28) or (9.30), where

hrad = qrad

Tw − Tsat
=
εσ

(
T 4
w − T 4

sat

)
Tw − Tsat

and where ε is a surface radiation property called the emittance (see
Section 10.1).

Unfortunately, such addition is not correct, because the additional
radiative heat transfer will increase the vapor blanket thickness, reducing
the convective contribution. Bromley [9.22] suggested for cylinders the
approximate relation

htotal = hboiling + 3
4 hrad, hrad < hboiling (9.31)

An accurate correction would be considerably more complex than this.
Other suggested forms have subsequently been offered for the radiation
correction. One of the most comprehensive is that of Pitschmann and
Grigull [9.25]. Their correlation, which is fairly intricate, brings together
an enormous range of heat transfer data for cylinders, within 20%. It is
worth noting that radiation is seldom important when the heater tem-
perature is less than 300◦C.

The use of the analogy between film condensation and film boiling is
somewhat questionable during film boiling on a vertical surface. In this
case, the liquid–vapor interface becomes Helmholtz-unstable at a short
distance from the leading edge. However, Leonard, Sun, and Dix [9.26]
have shown that by using λd1

/√
3 in place of D in eqn. (9.28), one obtains

a very satisfactory prediction of h for rather tall vertical plates.
The analogy between film condensation and film boiling also deteri-

orates when it is applied to small curved bodies. The reason is that the
thickness of the vapor film in boiling is far greater than the liquid film
during condensation. Consequently, a curvature correction, which could
be ignored in film condensation, must be included during film boiling
from small cylinders, spheres, and other curved bodies. The first curva-
ture correction to be made was an empirical one given by Westwater and
Breen [9.27] in 1962. They showed that the equation

NuD =
[(

0.715+ 0.263
R′

)(
R′

)1/4
]

NuDBromley (9.32)

applies when R′ < 1.86. Otherwise, Bromley’s equation should be used
directly.
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9.5 Minimum heat flux

Zuber [9.15] also provided a prediction of the minimum heat flux, qmin,
along with his prediction of qmax. He assumed that as Tw − Tsat is re-
duced in the film boiling regime, the rate of vapor generation eventually
becomes too small to sustain the Taylor wave action that characterizes
film boiling. Zuber’s qmin prediction, based on this assumption, has to
include an arbitrary constant. The result for flat horizontal heaters is

qmin = C ρghfg 4

√√√√σg(ρf − ρg)
(ρf + ρg)2

(9.33)

Zuber guessed a value of C which Berenson [9.28] subsequently corrected
on the basis of experimental data. Berenson used measured values of
qmin on horizontal heaters to get

qminBerenson = 0.09 ρghfg 4

√√√√σg(ρf − ρg)
(ρf + ρg)2

(9.34)

Lienhard and Wong [9.29] did the parallel prediction for horizontal wires
and found that

qmin = 0.515
[

18
R′2(2R′2 + 1)

]1/4

qmin Berenson (9.35)

The problem with all of these expressions is that some contact fre-
quently occurs between the liquid and the heater wall at film boiling heat
fluxes higher than the minimum. When this happens, the boiling curve
deviates above the film boiling curve and finds a higher minimum than
those reported above. The values of the constants shown above should
therefore be viewed as practical lower limits of qmin. We return to this
matter subsequently.

Example 9.8

Check the value of qmin shown in Fig. 9.2.

Solution. The heater is a flat surface, so we use eqn. (9.34) and the
physical properties given in Example 9.5.

qmin = 0.09(0.597)(2,257,000) 4

√
9.8(0.0589)(958)

(959)2
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or

qmin = 18,990 W/m2

From Fig. 9.2 we read 20,000 W/m2, which is the same, within the
accuracy of the graph.

9.6 Transition boiling and system influences

Many system features influence the pool boiling behavior we have dis-
cussed thus far. These include forced convection, subcooling, gravity,
surface roughness and surface chemistry, and the heater configuration,
among others. To understand one of the most serious of these—the influ-
ence of surface roughness and surface chemistry—we begin by thinking
about transition boiling, which is extremely sensitive to both.

Surface condition and transition boiling

Less is known about transition boiling than about any other mode of
boiling. Data are limited, and there is no comprehensive body of theory.
The first systematic sets of accurate measurements of transition boiling
were reported by Berenson [9.28] in 1960. Figure 9.14 shows two sets of
his data.

The upper set of curves shows the typical influence of surface chem-
istry on transition boiling. It makes it clear that a change in the surface
chemistry has little effect on the boiling curve except in the transition
boiling region and the low heat flux film boiling region. The oxidation of
the surface has the effect of changing the contact angle dramatically—
making it far easier for the liquid to wet the surface when it touches it.
Transition boiling is more susceptible than any other mode to such a
change.

The bottom set of curves shows the influence of surface roughness on
boiling. In this case, nucleate boiling is far more susceptible to roughness
than any other mode of boiling except, perhaps, the very lowest end of the
film boiling range. That is because as roughness increases the number
of active nucleation sites, the heat transfer rises in accordance with the
Yamagata relation, eqn. (9.3).

It is important to recognize that neither roughness nor surface chem-
istry affects film boiling, because the liquid does not touch the heater.



Figure 9.14 Typical data from Berenson’s [9.28] study of the
influence of surface condition on the boiling curve.
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Figure 9.15 The transition boiling regime.

The fact that both effects appear to influence the lower film boiling range
means that they actually cause film boiling to break down by initiating
liquid–solid contact at low heat fluxes.

Figure 9.15 shows what an actual boiling curve looks like under the
influence of a wetting (or even slightly wetting) contact angle. This figure
is based on the work of Witte and Lienhard ([9.30] and [9.31]). On it are
identified a nucleate-transition and a film-transition boiling region. These
are continuations of nucleate boiling behavior with decreasing liquid–
solid contact (as shown in Fig. 9.3c) and of film boiling behavior with
increasing liquid–solid contact, respectively.

These two regions of transition boiling are often connected by abrupt
jumps. However, no one has yet seen how to predict where such jumps
take place. Reference [9.31] is a full discussion of the hydrodynamic
theory of boiling, which includes an extended discussion of the transition
boiling problem and a recent correlation for the transition-film boiling
heat flux by Ramilison and Lienhard [9.32].
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Figure 9.16 The influence of subcooling on the boiling curve.

Figure 9.14 also indicates fairly accurately the influence of roughness
and surface chemistry on qmax. It suggests that these influences normally
can cause, at the very least, a ±10% variation in qmax that is not predicted
in the hydrodynamic theory.

Subcooling

A stationary pool will normally not remain below its saturation temper-
ature over an extended period of time. When heat is transferred to the
pool, the liquid soon becomes saturated—as it does in a teakettle (recall
Experiment 54). However, before a liquid comes up to temperature, or if
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a very small rate of forced convection continuously replaces warm liquid
with cool liquid, we can justly ask what the effect of a cool liquid bulk
might be.

Figure 9.16 shows how a typical boiling curve might be changed if
Tbulk < Tsat: We know, for example, that in laminar natural convection,
q will increase as (Tw − Tbulk)5/4 or as [(Tw − Tsat) + ∆Tsub]5/4, where
∆Tsub ≡ Tsat−Tbulk. During nucleate boiling, the influence of subcooling
on q is known to be small. The peak and minimum heat fluxes are known
to increase linearly with ∆Tsub. These increases are quite significant.
The film boiling heat flux increases rather strongly, especially at lower
heat fluxes. The influence of ∆Tsub on transitional boiling is not well
documented.

Gravity

The influence of gravity (or any other such body force) is of concern be-
cause boiling processes frequently take place in rotating or accelerating
systems. The reduction of gravity is a serious concern in boiling pro-
cesses on-board space vehicles. Since g appears explicitly in the equa-
tions for qmax, qmin, and qfilm boiling, we know what its influence is. Both
qmax and qmin increase directly as g1/4 in finite bodies, and there is a
secondary gravitational influence which enters through the parameter
L′. However, when gravity is small enough to reduce R′ below about
0.15, the hydrodynamic transitions deteriorate and eventually vanish al-
together. Although Rohsenow’s equation suggests that q is proportional
to g1/2 in the nucleate boiling regime, other evidence suggests that the
influence of gravity is very slight in this range.

Forced convection

The influence of superposed flow on the pool boiling curve for a given
heater (e.g., Fig. 9.2) is generally to improve heat transfer everywhere. But
flow is particularly effective in raising qmax. Let us look at the influence
of flow on the different regimes of boiling.

Influences of forced convection on nucleate boiling. Figure 9.17 shows
nucleate boiling during the forced convection of water over a flat plate.
Bergles and Rohsenow (see, e.g., [9.8, Chap. 13]) offer an empirical strat-
egy for predicting the heat flux during nucleate flow boiling when the
net vapor generation is still relatively small. (The photograph in Fig. 9.17



458 Heat transfer in boiling and other phase-change configurations §9.6

shows how a substantial buildup of vapor can radically alter flow boiling
behavior.) They suggest that

q = qFC

√√√√1+ qB
qFC

(
1− qi

qB

)2

(9.36)

where

• qFC is the single-phase forced convection heat transfer for the heater,
as one might calculate using the methods of Chapters 6 and 7.

• qB is the pool boiling heat flux for that liquid and that heater.

• qi is the heat flux from the pool boiling curve evaluated at the value
of (Tw−Tsat)where boiling begins during flow boiling (see Fig. 9.17).

Notice that as qB increases, eqn. (9.36) suggests that

q �→ √
qFCqB = a geometric mean q

Equation (9.36) will provide a first approximation in most boiling con-
figurations, but it is restricted to subcooled flows or other situations in
which vapor generation is not too great.

Peak heat flux in external flows. The peak heat flux on a submerged
body is strongly augmented by an external flow around it. Although
knowledge of this area is in a state of flux, we do know from dimensional
analysis that

qmax

ρghfgu∞
= fn

(
WeD,ρf

/
ρg

)
(9.37)

where the Weber number, We, is

WeL ≡ ρgu2∞L
σ

= inertia force
/
L

surface force
/
L

and where L is any characteristic length.
Kheyrandish and Lienhard [9.33] suggest fairly complex expressions

of this form for qmax on horizontal cylinders in cross flows. For a cylin-
drical jet impinging on a heated disk of diameter D, Sharan and Lien-
hard [9.34] obtained

qmax

ρghfgujet
=

(
0.21+ 0.0017ρf

/
ρg

)(
djet

D

)1/3 (
1000ρg/ρf

WeD

)
A (9.38)



§9.6 Transition boiling and system influences 459

Figure 9.17 Forced convection boiling on an external surface.

where, if we call ρf /ρg ≡ r ,

A = 0.486+ 0.06052 ln r − 0.0378 (ln r)2 + 0.00362 (ln r)3 (9.39)

This correlation represents all the existing data within ±20% over the full
range of the data.

The influence of fluid flow on film boiling. The work of Bromley, LeRoy,
and Robbers [9.35] shows that the film boiling heat flux during forced
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flow normal to a cylinder should take the form

q = constant

(
k∆Tρgh′fgu∞

D

)1/2

(9.40)

where their data fixed the constant at 2.70. Witte [9.36] obtained the
same relationship for flow over a sphere and recommended a value of
2.98 for the constant.

Additional work in the literature deals with forced film boiling on
plane surfaces and combined forced and subcooled film boiling in a vari-
ety of geometries. Although these studies are beyond our present scope,
it is worth noting that one may attain very high cooling rates using film
boiling with both forced convection and subcooling.

9.7 Forced convection boiling in tubes

Relationship between heat transfer and temperature difference

Forced convection boiling in a tube or duct is a process that becomes very
hard to delineate because it takes so many forms. In addition to the usual
system variables that must be considered in pool boiling, the formation
of many regimes of boiling requires that we understand several boiling
mechanisms and the transitions between them, as well.

Collier and Thome’s excellent book, Convective Boiling and Condensa-
tion [9.37], provides a comprehensive discussion of the issues involved
in forced convection boiling. Figure 9.18 is their representation of the
fairly simple case of flow of liquid in a uniform wall heat flux tube in
which body forces can be neglected. This situation is representative of a
fairly low heat flux at the wall. The vapor fraction, or quality, of the flow
increases steadily until the wall “dries out.” Then the wall temperature
rises rapidly. With a very high wall heat flux, the pipe could burn out
before dryout occurs.

Figure 9.19, also provided by Collier, shows how the regimes shown
in Fig. 9.18 are distributed in heat flux and in position along the tube. No-
tice that at high enough heat fluxes, burnout can be made to occur at any
station in the pipe. In the nucleate boiling regimes the heat transfer can
be predicted fairly well using the method described in Section 9.6. But
in the annular flow regimes (E and F in Fig. 9.18) the heat transfer mech-
anism is radically altered, and one of the best methods for predicting q
is that of Chen [9.38].



Figure 9.18 The development of a two-phase flow in a tube
with a uniform wall heat flux (not to scale).
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Figure 9.19 The influence of heat flux on two-phase flow behavior.

Chen developed a complex—but fairly accurate—method for comput-
ing h for water in an annular pipe flow. It is best explained in the form
of a recipe:

• Compute the Martinelli parameter,4 Xtt , for the flow:

Xtt �
(

1− x
x

)0.9
(
ρg
ρf

)0.5 (
µf
µg

)0.1

(9.41)

where x is the quality of the flow at the point of interest. The

4R. C. Martinelli was an important figure in American heat transfer for a few brief
years in the 1940s, before he died of leukemia at an early age. He contributed to
the famous Berkeley Heat Transfer Notes [9.39], and he set down the foundations for
predicting heat transfer in two-phase flows, among other accomplishments.
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Figure 9.20 Chen’s [9.38] two-phase flow parameters.

Martinelli parameter is defined as

Xtt =
√(

dp
dx

)
f

/(
dp
dx

)
g

(9.42)

and eqn. (9.41) is a correlation that approximatesXtt as it is defined
by eqn. (9.42). Thus, X2

tt is the ratio of the frictional pressure gradi-
ent for a single-phase turbulent liquid flow at the mass flow rate of
the liquid component of the two-phase flow to a similarly-defined
pressure gradient for the vapor component.

• Obtain the empirical function, F , at this Xtt from Fig. 9.20. F1/0.8 is
the ratio of the two-phase Reynolds number, ReTP (defined below)
to the conventional liquid-phase Reynolds number, Ref .

• Calculate the superficial mass flux, G, through the pipe:

G ≡ ṁ
Apipe

• Calculate the single-phase heat transfer coefficient, hc , from the
Dittus-Boelter equation, eqn. (7.38), using saturated liquid proper-
ties and the Reynolds number, ReTP :

ReTP ≡ F1.25
[
G(1− x)D

/
µf

]
≡ F1.25Ref (9.43)
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• Obtain the empirical factor, S, from Fig. 9.20 at the known value of
ReTP .

• Calculate a nucleate boiling heat transfer coefficient, hNB , from

hNB = 0.00122


 k0.79

f c0.45
Pf ρ0.49

f

σ0.5µ0.29
f h0.24

fg ρ0.24
g


 (∆Tsat)0.24 (

∆psat
)0.75

(9.44)

where ∆psat is psat at Tw minus psat at Tsat, ∆Tsat is (Tw−Tsat), and
any consistent units may be used.

• Calculate hTP from

hTP = ShNB + hc (9.45)

for a range of values of ∆Tsat.

• Plot q = hTP∆Tsat against ∆Tsat and read ∆Tsat, for the case of
interest, where this curve intersects qw ; or solve eqn. (9.45) for
∆Tsat by trial and error, using the steam tables to get ∆psat.

Example 9.9

0.6 kg/s of H2O at 200◦C flows in a 5 cm diameter tube heated by
184,000 W/m2. Find the wall temperature at a point where the quality
x is 20%.

Solution.

Xtt =
(

1− 0.20
0.2

)0.9
5.23× 10−4

(
0.000139

0.00001607

)0.1
= 0.411,

so from Fig. 9.20 we read F = 5.1. Then, since

G = ṁ
Apipe

= 0.6
0.00196

= 306 kg/m2·s

we calculate

ReTP = F1.25

[
G(1− x)

D
µf

]
= 7.66(306)(1− 0.2)(0.05)

0.00139

= 67,500
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Then, from eqn. (7.38),

hc = 0.0246
k
D

Pr0.4 Re0.8
TP

= 0.0246
0.658
0.05

(0.915)0.4(67,500)0.8

= 2281 W/m2K

and from Fig. 9.20, we read S = 0.51. Finally, we calculate

hNB = 0.00122

[
(0.658)0.79(4505)0.45(865)0.49

(0.0377)0.5(0.000139)0.29(1,941,000)0.24(0.597)0.24

]

×∆T 0.24
sat ∆p0.75

sat

= 2.52 ∆T 0.24
sat ∆p0.75

sat

so

hTP = ShNB + hc = 1.284 ∆T 0.24
sat ∆p0.75

sat + 2281

and

qw = 25,000 = 1.284 ∆T 1.24
sat ∆p0.75

sat + 2281 ∆Tsat

Then, using a steam table to evaluate ∆psat, we solve for ∆Tsat by trial
and error. The first trial goes like this: first guess,

∆Tsat = 10 K so Tw = 210◦C

then

∆psat = psat(210◦C)− psat(200◦C) = 352,900 N/m2

and

184,000 ≠ 323,075+ 22,810 = 345,885

so we try a lower ∆T . After a few more tries, we get

∆T � 7.3 K so Tw � 207.3◦C

This is a very low temperature difference because the heat transfer
process is very efficient. In this case,

h � 184,000
7.3

= 25,200 W/m2K



466 Heat transfer in boiling and other phase-change configurations §9.8

Peak heat flux

We have seen that there are two limiting heat fluxes in flow boiling in a
tube: dryout and burnout. The latter is the more dangerous of the two
since it occurs at higher heat fluxes and gives rise to more catastrophic
temperature rises. A great deal of work continues to be done on this
problem, but the matter is far from resolved. Collier and Thome provide
an extensive discussion of this subject [9.37]. Hsu and Graham [9.40]
include a useful catalog of restrictive empirical burnout formulas.

A promising development in the prediction of the burnout heat flux
has recently been given by Katto [9.41]. Katto used dimensional analysis
to show that

qmax

Ghfg
= fn

(
ρg
ρf

,
σρf
G2L

,
L
D

)

where L is the length of the tube and D its diameter. Since G2L
/
σρf is

a Weber number, we can see that this equation is of the same form as
eqn. (9.37). Katto identifies several regimes of flow boiling with both sat-
urated and subcooled liquid entering the pipe. For each of these regions,
he fits a successful correlation of this form to existing data.

9.8 Two-phase flow in horizontal tubes

The preceding discussion of flow boiling in tubes is restricted to vertical
tubes. Several of the flow regimes in Fig. 9.18 will be altered as shown in
Fig. 9.21 if the tube is oriented horizontally. The reason is that, especially
at low quality, liquid will tend to flow along the bottom of the pipe and
vapor along the top. The pattern shown in Fig. 9.21, by the way, will be
observed during boiling during the reverse process—condensation—or
during adiabatic two-phase flow.

Many methods have been suggested to predict what flow patterns will
result for a given set of conditions in the pipe. Figure 9.22 shows a so-
called modified Baker plot, given by Bell, Taborek, and Fenoglio [9.42].
This graph gives the approximate flow regime as a function of the liquid
and vapor flow rates in the tube. The precision of such a representation
is not high, since transitions themselves are not sharply defined. The
coordinates, which involve other variables as well as the flow rates, are
in mixed English and metric units.

In the upper right-hand corner of the flow regime plot (Fig. 9.22) is
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Figure 9.21 The discernible flow
regimes during boiling, condensation, or
adiabatic flow from left to right in
horizontal tubes.

shown a quality overlay curve. By translating this dashed curve so that it
overlays one point of known quality on Fig. 9.22, it is possible to read off
any other quality directly with no additional computation. We illustrate
its use with an example.

Example 9.10

Water vapor is condensing in a 4 cm I.D. horizontal tube at 1 atm. The
total mass flow rate is 0.2 kg/s. Estimate how much heat transfer will
occur in the annular flow regime.

Solution. We first identify the point of—say—50% quality. This will
be the point at which ṁvapor = ṁliquid = 0.1 kg/s.

ṁvapor

Atube
√ρfρg =

0.1
(π/4)(0.04)2

√
958(0.597)

= 3.33 m/s = 39,331 ft/hr

and

ṁliquid

Atube


 µ1/3

f

σρ2/3
f


 = 0.1

(π/4)(0.04)2

(
0.0002771/3

0.0589(958)2/3

)
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Figure 9.22 Modified Baker plot for identifying two-phase flow
regimes (after [9.42]).

= 0.906
kg

m2·s
m8/3

N·s1/3·kg1/3

= 0.906
kg

m2·s
m8/3

N·s1/3·kg1/3

(
N/m

103 dyn/cm

)

×
(

2.205
lbm

kg

)2/3 (
0.3048

m
ft

)1/3 (
3600

s
hr

)4/3

= 57.0
lbm

ft2·hr
cm·hr5/3

dyn·hr1/3·lb1/3
m

Now we identify the point with these coordinates on Fig. 9.22 and
slide the dashed curve over so that the point at which x = 0.5 lies
on top of it. Then we note where the curve crosses the boundaries
of the annular flow regime. This can easily be done by connecting
the calculated point with the x = 0.5 point on the dashed line and
by locating the parallel line segments of equal length that connect
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the dashed line to the annular flow region boundaries. These line
segments intersect the overlay line at x = 0.94 and 0.043.

The heat transfer required to change the quality of 0.2 kg/s of
steam/water from 0.94 to 0.043 is ṁtotalhfg(xinitial − xfinal), or

Q =
(

0.2
kg
s

)(
2257

kJ
kg

)
(0.94− 0.043) = 405 kW

The Baker plot is somewhat limited by the restrictive data on which
it is based. It is therefore most accurate when applied to air–water flows
in small horizontal tubes. Dukler, Taitel, and many co-workers have de-
veloped more comprehensive and accurate methods for predicting two-
phase flow regimes. Their work is summarized in [9.43].

9.9 Forced convective condensation heat transfer

When vapor is blown or forced past a cool wall, it exerts a shear stress
on the condensate film. If the direction of forced flow is downward, it
will drag the condensate film along, thinning it out and enhancing heat
transfer. It is not hard to show (see Problem 9.22) that

4µk(Tsat − Tw)x
gh′fgρf (ρf − ρg)

= δ4 + 4
3

[
τδδ3

(ρf − ρg)g

]
(9.46)

where τδ is the shear stress exerted by the vapor flow on the condensate
film.

Equation (9.46) is the starting point for any analysis of forced convec-
tion condensation on an external surface. Notice that if τδ is negative—if
the shear opposes the direction of gravity—then it will have the effect of
thickening δ and reducing heat transfer. Indeed, if for any value of δ,

τδ = −
3g(ρf − ρg)

4
δ (9.47)

the shear stress will have the effect of halting the flow of condensate
completely for a moment until δ grows to a larger value.

Heat transfer solutions based on eqn. (9.46) are complex because they
require that one solve the boundary layer problem in the vapor in order to
evaluate τδ; and this solution must be matched with the velocity at the
outside surface of the condensate film. Collier [9.37, §10.5] discussed
such solutions in some detail. One explicit result has been obtained
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in this way for condensation on the outside of a horizontal cylinder by
Shekriladze and Gomelauri [9.44]:

NuD = 0.64


ρfu∞Dµf


1+

(
1+ 1.69

gh′fgµfD

u2∞kf (Tsat − Tw)

)1/2



1/2

(9.48)

where u∞ is the free stream velocity and NuD is based on the liquid
conductivity. Equation (9.48) is valid up to ReD ≡ ρfu∞D

/
µf = 106.

Notice, too, that under appropriate flow conditions (large values of u∞,
for example), gravity becomes unimportant and

NuD �→ 0.64
√

2ReD (9.49)

The prediction of heat transfer during forced convective condensa-
tion in tubes becomes a different problem for each of the many possible
flow regimes. The reader is referred to [9.37, §10.5] or [9.42] for details.

9.10 Dropwise condensation

An automobile windshield normally is covered with droplets during a
light rainfall. They are hard to see through, and one must keep the wind-
shield wiper moving constantly to achieve any kind of visibility. A glass
windshield is normally quite clean and is free of any natural oxides, so
the water forms a contact angle on it and any film will be unstable. The
water tends to pull into droplets, which intersect the surface at the con-
tact angle. Visibility can be improved by mixing a surfactant chemical
into the window-washing water to reduce surface tension. It can also be
improved by preparing the surface with a “wetting agent” to reduce the
contact angle.5

Such behavior can also occur on a metallic condensing surface, but
there is an important difference: Such surfaces are generally wetting.
Wetting can be temporarily suppressed, and dropwise condensation can
be encouraged, by treating an otherwise clean surface (or the vapor) with
oil, kerosene, or a fatty acid. But these contaminates wash away fairly
quickly, and the liquid condensed in a heat exchanger almost always
forms a film.

5A way in which one can accomplish these ends is by wiping the wet window with
a cigarette. It is hard to tell which of the two effects the many nasty chemicals in the
cigarette achieve.



a. The process of liquid removal during dropwise con-
densation.

b. Typical photograph of dropwise condensation pro-
vided by Professor Borivoje B. Mikíc. Notice the dry paths
on the left and in the wake of the middle droplet.

Figure 9.23 Dropwise condensation.
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It is regrettable that this is the case, because what is called drop-
wise condensation is an extremely effective heat removal mechanism.
Figure 9.23 shows how it works. Droplets grow from active nucleation
sites on the surface, and in this sense there is a great similarity between
nucleate boiling and dropwise condensation. The similarity persists as
the droplets grow, touch, and merge with one another until one is large
enough to be pulled away from its position by gravity. It then slides off,
wiping away the smaller droplets in its path and leaving a dry swathe in
its wake. New droplets immediately begin to grow at the nucleation sites
in the path.

The repeated re-creation of the early droplet growth cycle creates a
very efficient heat removal mechanism. It is typically ten times more ef-
fective than film condensation under the same temperature difference.
Indeed, condensing heat transfer coefficients as high as 200,000 W/m2·◦C
can be obtained with water at 1 atm. Were it possible to sustain dropwise
condensation, we would certainly design equipment in such a way as to
make use of it. Unfortunately, laboratory experiments on dropwise con-
densation are almost always done on surfaces that have been prepared
with oleic, stearic, or other fatty acids, or, more recently, with dioctadecyl
disulphide. These nonwetting agents, or promoters as they are called, are
discussed in [9.45, 9.46]. While promoters are normally impractical for
industrial use, since they either wash away or oxidize, experienced plant
engineers have sometimes added rancid butter through the cup valves of
commercial condensers to get at least temporary dropwise condensation.

Finally, we note that the obvious tactic of coating the surface with a
thin, nonwetting, polymer film (such as PTFE, or Teflon) adds just enough
conduction resistance to reduce the overall heat transfer coefficient to a
value similar to film condensation, fully defeating its purpose! (Suffi-
ciently thin polymer layers have not been found to be durable.) Noble
metals, such as gold, platinum, and palladium, can also be used as non-
wetting coating, and they have sufficiently high thermal conductivity to
avoid the problem encountered with polymeric coatings. For gold, how-
ever, the minimum effective coating thickness is about 0.2 µm, or about
1/8 Troy ounce per square meter [9.47]. Such coatings are far too expen-
sive for the vast majority of technical applications.
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Figure 9.24 A typical heat pipe configuration.

9.11 The heat pipe

One significant application of phase change heat transfer is a device that
combines the high efficiencies of boiling and condensation. The device,
called a heat pipe, is aptly named because it literally pipes heat from a
hot region to a cold one.

The operation of the heat pipe is shown in Fig. 9.24. The pipe is a tube
that can be bent or turned in any way that is convenient. The inside of
the tube is lined with a layer of wicking material. The wick is wetted with
an appropriate liquid. One end of the tube is exposed to a heat source
that evaporates the liquid, drying out the wick. Capillary action quickly
replenishes the evaporated fluid and moves liquid axially along the wick.
Vapor likewise flows from the hot end of the tube to the cold end, where
it is condensed.

Placing a heat pipe between a hot region and a cold one is thus sim-
ilar to connecting the regions with a material of extremely high ther-
mal conductivity—orders of magnitude higher than any known substance
(other than helium II). Such devices are used not only for achieving high
heat transfer between a source and a sink but for a variety of less obvi-
ous purposes. They are used, for example, to level out temperature hot
spots in systems, since they function almost isothermally and require
enormous heat transfer to sustain any temperature difference.
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Design considerations in the specification of a given heat pipe for a
given application center on the following issues:

• Selection and installation of the wick. The wick is normally made of
stainless steel, copper, or another metallic mesh. Many ingenious
schemes have been created for bonding it to the inside of the pipe
and keeping it at optimum density.

• Selection of the right liquid. The liquid can be a cryogen, water,
liquid metal, or almost any substance, depending on the operating
temperature of the device. The following physical property charac-
teristics make a fluid desirable for heat pipe application:

(a) High latent heat.

(b) High thermal conductivity.

(c) High surface tension.

(d) Low viscosity.

(e) It should wet the wick material.

(f) It should have a suitable boiling point.

Two liquids that meet the first four criteria admirably are water and
mercury.

• Operating limits of the heat pipe. The heat flux through a heat pipe
is restricted by

(a) Viscous drag in the wick at low temperature.

(b) Ability of the wick to move the liquid through the required
head.

(c) Drag of the vapor on the returning liquid.

(d) The sonic or choking speed of the vapor.

(e) The burnout heat flux during boiling in the evaporation sec-
tion.

• Control of the pipe performance. Often a given heat pipe will be
called upon to function over a range of conditions—under varying
evaporator temperatures, for example, or under varying heat loads.
One way to vary its performance is to “spike” its effectiveness by
injecting more-or-less noncondensable gas into the pipe with an
automatic control system.
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Heat pipes have proven useful in cooling high power-density elec-
tronic devices. The evaporator is located on a small electronic component
to be cooled, perhaps a microprocessor, and the condenser is finned and
cooled by a forced air flow (in a desktop or mainframe computer) or is
unfinned and cooled by conduction into the exterior casing or structural
frame (in a laptop computer). These applications rely on having a heat
pipe with much larger condenser area than evaporator area. Thus, the
heat fluxes on the condenser are kept relatively low. This facilitates such
uncomplicated means for the ultimate heat disposal as using a small fan
to blow air over the condenser.

The reader interested in designing or selecting a heat pipe will find a
broad discussion of such devices in the book by Dunn and Reay [9.48] or
the review by Winter and Barsch [9.49]. Tien [9.50] has provided a useful
review of the fluid mechanics problems involved in heat pipes.

Problems

9.1 A large square tank with insulated sides has a copper base
1.27 cm thick. The base is heated to 650◦C and saturated wa-
ter is suddenly poured in the tank. Plot the temperature of the
base as a function of time on the basis of Fig. 9.2 if the bottom
of the base is insulated. In your graph, indicate the regimes
of boiling and note the temperature at which cooling is most
rapid.

9.2 Predict qmax for the two heaters in Fig. 9.3b. At what percentage
of qmax is each one operating?

9.3 A very clean glass container of water at 70◦C is depressurized
until it is subcooled 30◦C. Then it suddenly and explosively
“flashes” (or boils). What is the pressure at which this hap-
pens? Approximately what diameter of gas bubble, or other
disturbance in the liquid, caused it to flash?

9.4 Plot the unstable bubble radius as a function of liquid super-
heat for water at 1 atm. Comment on the significance of your
curve.

9.5 In chemistry class you have probably witnessed the phenomenon
of “bumping” in a test tube (the explosive boiling that blows the
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contents of the tube all over the ceiling). Yet you have never
seen this happen in a kitchen pot. Explain why not.

9.6 Use van der Waal’s equation of state to approximate the highest
reduced temperature to which water can be superheated at low
pressure. How many degrees of superheat does this suggest
that water can sustain at the low pressure of 1 atm? (It turns
out that this calculation is accurate within about 10%.) What
would Rb be at this superheat?

9.7 Use Yamagata’s equation to determine how nucleation site den-
sity increases with ∆T for Berenson’s curves in Fig. 9.14. (That
is, find c in the relation n = constant ∆Tc .)

9.8 Suppose that Csf for a given surface is high by 50%. What will
be the percentage error in q calculated for a given value of ∆T?
[Low by 70%.]

9.9 Water at 100 atm boils on a nickel heater whose temperature
is 6◦C above Tsat. Find h and q.

9.10 Water boils on a large flat plate at 1 atm. Calculate qmax if the
plate is operated on the surface of the moon (at 1

6 ofgearth−normal).
What would qmax be in a space vehicle experiencing 10−4 of
gearth−normal?

9.11 Water boils on a 0.002 m diameter horizontal copper wire. Plot,
to scale, as much of the boiling curve on logq vs. log∆T coor-
dinates as you can. The system is at 1 atm.

9.12 Redo Problem 9.11 for a 0.03 m diameter sphere in water at
10 atm.

9.13 Verify eqn. (9.17).

9.14 Make a sketch of the q vs. (Tw−Tsat) relation for a pool boiling
process, and invent a graphical method for locating the points
where h is maximum and minimum.

9.15 A 2 mm diameter jet of methanol is directed normal to the
center of a 1.5 cm diameter disk heater at 1 m/s. How many
watts can safely be supplied by the heater?
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9.16 Saturated water at 1 atm boils on a ½ cm diameter platinum
rod. Estimate the temperature of the rod at burnout.

9.17 Plot (Tw − Tsat) and the quality x as a function of position for
the conditions in Example 9.6. Set x = 0 where x = 0.

9.18 Plot (Tw−Tsat) and the quality x as a function of position in an
8 cm I.D. pipe if 0.3 kg/s of water at 100◦C passes through it
and qw = 200,000 W/m2. Explain how you would use Fig. 9.19
to set the range of the calculation if it were plotted to scale.

9.19 Use dimensional analysis to verify the form of eqn. (9.8).

9.20 Compare the peak heat flux calculated from the data given in
Problem 5.6 with the appropriate prediction. [The prediction
is within 11%.]

9.21 Find the highest and lowest mass flow rates for which the an-
nular flow region would not occur (except at extremely high
qualitites) in Example 9.9.

9.22 Verify eqn. (9.46) by repeating the analysis following eqn. (8.46)
but using the b.c. (∂u/∂y)y=δ = τδ

/
µ in place of (∂u/∂y)y=δ

= 0. Verify the statement involving eqn. (9.47).

9.23 A cool-water-carrying pipe 7 cm in outside diameter has an
outside temperature of 40◦C. Saturated steam at 80◦C flows
across it. Plot hcondensation over the range of Reynolds numbers
0 B ReD B 106. Do you get the value at ReD = 0 that you would
anticipate from Chapter 8?

9.24 (a) Suppose that you have pits of roughly 0.002 mm diameter in
a metallic heater surface. At about what temperature might you
expect water to boil on that surface if the pressure is 20 atm.
(b) Measurements have shown that water at atmospheric pres-
sure can be superheated about 200◦C above its normal boil-
ing point. Roughly how large an embryonic bubble would be
needed to trigger nucleation in water in such a state.

9.25 Obtain the dimensionless functional form of the pool boiling
qmax equation and the qmax equation for flow boiling on exter-
nal surfaces, using dimensional analysis.
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9.26 A chemist produces a nondegradable additive that will increase
σ by a factor of ten for water at 1 atm. By what factor will the
additive improve qmax during pool boiling on (a) infinite flat
plates and (b) small horizontal cylinders? By what factor will it
improve burnout in the flow of jet on a disk?

9.27 Steam at 1 atm is blown at 26 m/s over a 1 cm O.D. cylinder at
90◦C. What is h? Can you suggest any physical process within
the cylinder that could sustain this temperature in this flow?

9.28 The water shown in Fig. 9.17 is at 1 atm, and the Nichrome
heater can be approximated as nickel. What is Tw − Tsat?

9.29 For film boiling on horizontal cylinders, eqn. (9.6) is modified
to

λd = 2π
√

3

[
g(ρf − ρg)

σ
+ 2
(diam.)2

]−1/2

.

If ρf is 748 kg/m3 for saturated acetone, compare this λd, and
the flat plate value, with Fig. 9.3d.

9.30 Water at 47◦C flows through a 13 cm diameter thin-walled tube
at 8 m/s. Saturated water vapor, at 1 atm, flows across the tube
at 50 m/s. Evaluate Ttube, U , and q.

9.31 A 1 cm diameter thin-walled tube carries liquid metal through
saturated water at 1 atm. The throughflow of metal is increased
until burnout occurs. At that point the metal temperature is
250◦C and h inside the tube is 9600 W/m2·◦C. What is the wall
temperature at burnout?

9.32 At about what velocity of liquid metal flow does burnout occur
in Problem 9.31 if the metal is mercury?

9.33 Explain, in physical terms, why eqns. (9.23) and (9.24), instead
of differing by a factor of two, are almost equal. How do these
equations change when H′ is large?
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10. Radiative heat transfer

The sun that shines from Heaven shines but warm,
And, lo, I lie between that sun and thee:
The heat I have from thence doth little harm,
Thine eye darts forth the fire that burneth me:

And were I not immortal, life were done
Between this heavenly and earthly sun.

Venus and Adonis, Wm. Shakespeare

10.1 The problem of radiative exchange

Chapter 1 described the elementary mechanisms of heat radiation. Be-
fore we proceed, you should reflect upon what you remember about the
following key ideas from Chapter 1:

• Electromagnetic wave spectrum • α+ ρ + τ = 1
• Black body • The Stefan-Boltzmann law
• Hohlraum • The Stefan-Boltzmann constant
• Infrared (and other) radiation • e(T) and eλ(T) for black bodies
• Heat radiation • Planck’s law
• Transmittance • F1−2 and F1−2

• Reflectance • Radiation shielding
• Absorptance

We presume that these concepts are understood.

The heat exchange problem

Figure 10.1 shows two arbitrary surfaces radiating energy to one another.
The net heat exchange, Qnet, from the hotter surface (1) to the cooler
surface (2) depends on the following influences:
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Figure 10.1 Thermal radiation between two arbitrary surfaces.

• T1 and T2.

• The areas of (1) and (2).

• The configurations of (1) and (2) and the spacing between them.

• The radiative characteristics of the surfaces.

• Additional surfaces in the environment.

• The medium between (1) and (2). (If the medium is air, we can
usually neglect its influence.)

If surfaces (1) and (2) are black, if they are surrounded by air, if the sur-
faces in the environment are black, and if no heat flows between (1) and
(2) by conduction or convection, then only the first three considerations
are involved in determining Qnet. We saw some elementary examples of
how this could be done in Chapter 1. In this case

Qnet = F1−2A1σ
(
T 4

1 − T 4
2

)
(10.1)
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The last three considerations lead to great complications of the problem.
In Chapter 1 we saw that these nonideal factors are sometimes included
in a “real body view factor,” or transfer factor F1−2, such that

Qnet = F1−2A1σ
(
T 4

1 − T 4
2

)
(10.2)

Before we undertake the problem of evaluating heat exchange among real
bodies, we need several definitions.

Some definitions

Emittance. A real body at temperature T does not emit with the black
body emissive power eb = σT 4 but rather with some fraction, ε, of eb.
Thus, we define either the monochromatic emittance, ελ:

ελ ≡ eλ (λ, T)
eλb (λ, T)

(10.3)

or the total emittance, ε:

ε ≡ e(T)
eb(T)

=
∫∞
0 eλ (λ, T) dλ

σT 4
(10.4)

The emittance is determined entirely by the properties of the surface of
the particular body and its temperature. It is independent of the envi-
ronment of the body.

Table 10.1 lists typical values of the total emittance for a variety of
real substances. (These were summarized from [10.1].) Notice that most
metals have quite low emittances, unless they are oxidized. Most non-
metals have emittances that are quite high—approaching the black body
limit of unity. Notice that among the “blackest” surfaces in the table are
white paint, paper, and ice.

One particular kind of surface behavior is that for which ελ is inde-
pendent of λ. We call such a surface a gray body. The emissive power,
e(T), for a gray body is a constant fraction, ε, of eb(T), as indicated in the
inset of Fig. 10.2. No real body is gray, but many exhibit approximately
gray behavior. We see in Fig. 10.2, for example, that the sun appears
to us on earth as an approximately gray body with an emittance of ap-
proximately 0.6. We shall often use the gray body simplification in this
chapter to avoid the formidable difficulties of considering the variation
of ελ with λ.

Yet the emittance of most, but far from all, common materials and
coatings tends to decrease with wavelength in the thermal range. Some



Table 10.1 Total emittances for a variety of surfaces

Metals Nonmetals

Surface Temp. (◦C) ε Surface Temp. (◦C) ε

Aluminum Asbestos 40 0.93–0.97
Polished, 98% pure 200−600 0.04–0.06 Brick
Commercial sheet 90 0.09 Red, rough 40 0.93
Heavily oxidized 90−540 0.20–0.33 Silica 980 0.80–0.85

Brass Fireclay 980 0.75
Highly polished 260 0.03 Ordinary refractory 1090 0.59
Dull plate 40−260 0.22 Magnesite refractory 980 0.38
Oxidized 40−260 0.46–0.56 White refractory 1090 0.29

Copper Carbon
Highly polished electrolytic 90 0.02 Filament 1040−1430 0.53
Slightly polished to dull 40 0.12–0.15 Lampsoot 40 0.95
Black oxidized 40 0.76 Concrete, rough 40 0.94

Gold: pure, polished 90−600 0.02–0.035 Glass
Iron and steel Smooth 40 0.94

Mild steel, polished 150−480 0.14–0.32 Quartz glass (2 mm) 260−540 0.96–0.66
Steel, polished 40−260 0.07–0.10 Pyrex 260−540 0.94–0.74
Sheet steel, rolled 40 0.66 Gypsum 40 0.80–0.90
Sheet steel, strong 40 0.80 Ice 0 0.97–0.98

rough oxide
Cast iron, oxidized 40−260 0.57–0.66 Limestone 400−260 0.95–0.83
Iron, rusted 40 0.61–0.85 Marble 40 0.93–0.95
Wrought iron, smooth 40 0.35 Mica 40 0.75
Wrought iron, dull oxidized 20−360 0.94 Paints
Stainless, polished 40 0.07–0.17 Black gloss 40 0.90

Stainless, after repeated 230−900 0.50–0.70 White paint 40 0.89–0.97
heating Lacquer 40 0.80–0.95

Lead Various oil paints 40 0.92–0.96
Polished 40−260 0.05–0.08 Red lead 90 0.93
Oxidized 40−200 0.63 Paper

Mercury: pure, clean 40−90 0.10–0.12 White 40 0.95–0.98
Platinum Other colors 40 0.92–0.94

Pure, polished plate 200−590 0.05–0.10 Roofing 40 0.91
Oxidized at 590◦C 260−590 0.07–0.11 Plaster, rough lime 40−260 0.92
Drawn wire and strips 40−1370 0.04–0.19 Quartz 100−1000 0.89–0.58

Silver 200 0.01–0.04 Rubber 40 0.86–0.94
Tin 40−90 0.05 Snow 10−20 0.82
Tungsten Water, thickness ≥0.1 mm 40 0.96

Filament 540−1090 0.11–0.16 Wood 40 0.80–0.90
Filament 2760 0.39 Oak, planed 20 0.90
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Figure 10.2 Comparison of the energy emitted by the sun (as
viewed through the earth’s atmosphere) with a black body at
the same mean temperature. (Notice that the effective eλb , just
outside the earth’s atmosphere, is far less than it is on the sur-
face of the sun because the radiation has spread out.)

materials—for example, copper, aluminum oxide, and certain paints—are
actually pretty close to being gray surfaces at normal temperatures.

The selective surface presents an important example of nongray be-
havior. Such a surface has a very high emittance above or below a certain
wavelength and a very low value in the other range. Window glass, for
example, is quite selective. Its emissivity is quite low below λ � 2.7 µm,
and it abruptly jumps to a high value above 2.7 µm. In accordance with
Kirchhoff’s law, the absorptance behaves similarly. However, the fact
that glass admits short-wavelength energy from the sun to a room, but
does not let the long-wavelength energy from the room escape, is the
result of its transmissivity, which is selectively high in the visible range
and close to zero at longer wavelengths.
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Specular or mirror-like
reflection of incoming ray.

Reflection which is
between diffuse and
specular (a real surface).

Diffuse radiation in which
directions of departure are
uninfluenced by incoming
ray angle, θ.

Figure 10.3 Specular and diffuse reflection of radiation.
(Arrows indicate magnitude of the heat flux in the directions
indicated.)

The emittance can also exhibit a strong surface temperature depen-
dence, either increasing or decreasing with temperature. Certain metals—
for example, clean or oxidized copper or stainless steel—are relatively
insensitive to temperature over large ranges. Whether or not the emit-
tance can be assumed temperature-independent in a given problem often
depends on how large a temperature range is being considered.

Diffuse and specular emittance and reflection. The energy emitted by
a surface, together with that portion of an incoming ray of energy that
is reflected from another non-black surface, may leave the body diffusely
or specularly. That energy may also be emitted or reflected in a way
that lies between these limits. Figure 10.3 shows how radiation might
be reflected in these various ways. A mirror reflects visible radiation in
an almost perfectly specular fashion. (The “reflection” of a billiard ball
from the side of a table is also specular.) When reflection or emission is
diffuse, there is no preferred direction for outgoing rays.

The character of the emittance or reflectance of a surface will nor-
mally change with the wavelength of the radiation. We shall often as-
sume diffuse behavior on the part of the surface, but this will be strictly
true only if the surface is black.
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Experiment 10.1

Obtain a flashlight with as narrow a spot focus as you can find. Direct
it at an angle onto a mirror, onto the surface of a bowl filled with sugar,
and onto a variety of other surfaces, all in a darkened room. In each case,
move the palm of your hand around the surface of an imaginary hemi-
sphere centered on the point where the spot touches the surface. Notice
how your palm is illuminated, and categorize the kind of reflectance of
each surface—at least in the range of visible wavelengths.

Intensity of radiation. Consider radiation from a circular surface ele-
ment, dA, as shown at the top of Fig. 10.4. If the element is black, the
radiation that it emits is indistinguishable from the radiation that would
be emitted from a black cavity at the same temperature, and it is the
same in all directions. (For diffusely radiating nonblack bodies, the con-
siderations below apply equally to the radiant energy leaving the surface.)
Thus, the rate at which energy is emitted in any direction is proportional
to the projected area of dA normal to the direction of view, as shown in
the upper right side of Fig. 10.4.

If an aperture of area dAa is placed at a radius r from dA and normal
to the radius, it will intercept a fraction of the energy emitted by dA.
The magnitude of that fraction is equal to the ratio of the solid angle,1 ω,
subtended by dAa to the solid angle subtended by the entire hemisphere.
We define a quantity called the intensity of radiation, i (W/m2·steradian),
which is defined by an energy balance statement:

dqoutgoing = idω cosθ =
{

fraction of radiant heat transfer
from dA that is intercepted by dAa

(10.5)

Notice that while the heat flux from dA decreases with θ (as indicated on
the right side of Fig. 10.3), the intensity of energy from a diffuse surface
is uniform in all directions.

Finally, we compute i in terms of q by integrating idω over the entire
unit hemisphere and noting (see Fig. 10.4) that dω = sinθ dθdφ.

qoutgoing =
∫ 2π

φ=0

∫ π/2

θ=0
i cosθ (sinθ dθdφ) = πi (10.6a)

1The unit of solid angle is the steradian. One steradian is the solid angle subtended
by a spherical segment whose area equals the square of its radius. A full sphere there-
fore subtends 4πr 2/r 2 = 4π steradians.
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Figure 10.4 Radiation intensity through a unit sphere.

Thus, for a black body,

ib = σT 4

π
= eb
π
= fn (T only) (10.6b)

and for any particular wavelength, we define the monochromatic inten-
sity

iλ = eλ
π
= fn (T , λ) (10.6c)
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10.2 Kirchhoff’s law

The problem of predicting α

The total emittance, ε, of a surface is uniquely determined by the char-
acteristics of the surface. But the absorptance, α, while it is surface-
dependent, is also influenced by the environment from which the surface
receives energy. The reason is thatα depends on the way in which incom-
ing energy is distributed in wavelength. That distribution is determined
by the characteristics of the surfaces from which the surface of inter-
est receives radiation. Furthermore, if the temperatures of those bodies
from which radiation is received are changed, the energy distribution in
wavelength will change as well.

We are thus faced with the problem that α depends on the surface
characteristics and the temperatures of all bodies involved in a given
heat exchange process. Kirchhoff’s law2 is a theoretical relation that can
be used to predict α under certain restrictions. Next, we shall develop
the law and state the restrictions on it.

Simple heat exchange problem

Figure 10.5 shows two surfaces that exchange heat by radiation. We want
to sum the energy exchanges between the two bodies to get the net heat
transfer from plane (1) to plane (2). The outward heat flux, q1, from plane
(1) is the sum of two parts: the fraction of the heat from plane (2) that
is reflected away from it (and not absorbed) and the heat that is emitted
by it. Thus,

q1 = (1−α1) q2 + ε1eb1 (10.7a)

The outward heat flux, q2, from plane (2) is likewise

q2 = (1−α2) q1 + ε2eb2 (10.7b)

Solving this pair of simultaneous equations and noting that ε1eb1 = e1

and ε2eb2 = e2, we get

q1 = e1 + e2 −α1e2

α1 +α2 −α1α2
and q2 = e1 + e2 −α2e1

α1 +α2 −α1α2
2Gustav Robert Kirchhoff (1824–1887) was a very important German physicist of the

nineteenth century. He presented this “Kirchhoff’s law” when he was only 25 years old.
But he is also known for a great deal of basic work in the thermodynamics of phase
change and in electric theory.
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Figure 10.5 Heat transfer between two
infinite parallel plates.

The net heat flux from plane (1) to plane (2) is then the difference between
these two heat fluxes:

q1 to 2 = α2e1 −α1e2

α1 +α2 −α1α2
=

e1

α1
− e2

α2(
1
α1

+ 1
α2

− 1
) (10.8)

Finally, we note that if T1 = T2, q1 to 2 must equal zero. Furthermore,
all the quantities here depend on the common temperature T1 = T2 = T .
Thus, we obtain from eqn. (10.8)

e1

α1
= e2

α2
= fn(T) (10.9)

This result is Kirchhoff’s law. The most important consequence of Kirch-
hoff’s law is obtained by allowing, say, body (2) to be black. Then α2 = 1,
e2 = σT 4 and eqn. (10.9) becomes

ε1σT 4

α1
= σT 4

1

so ε1 = α1. The subscripts are then superfluous and we can write

ε = α approximate form of
Kirchhoff’s law

(10.10a)
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Equation (10.10a) is a somewhat dangerous result in that it is only
strictly true under very restrictive circumstances. We have noted that
when radiation from a hot surface falls on a cooler one, the wavelength
distribution of the incoming energy will differ from that of the re-emitted
energy. A more precise derivation (see, e.g. [10.2], Chapter 3) reveals
that Kirchhoff’s law is exactly true only for a specific temperature, T ,
wavelength, λ, and direction of radiation, (θ,φ):

ελ (T , θ,φ) = αλ (T , θ,φ)
exact form of
Kirchhoff’s law

(10.10b)

Of course, the use of eqn. (10.10a) is a great convenience when it is
legitimate. It turns out that it is valid under the following conditions:

• The body is gray. Then α = ε ≠ fn (λ).

• The surroundings are black, so that αλ = ελ ≠ fn(T).

• The trivial case in which the body and its surroundings are at the
same temperature.

It can also be shown for metallic surfaces that if the surroundings are
black or gray, α = ε(T), where

T ≡
√
(Tsurroundings)(Tsurface)

As a typical example of the failure of eqn. (10.10a), consider solar ra-
diation incident on a roof, painted black. From Table 10.1, we see that ε
is on the order of 0.94. It turns out that α is just about the same. If we
repaint the roof white, ε will not change noticeably. However, much of
the energy arriving from the sun is carried in visible wavelengths. Our
eyes tell us that white paint reflects sunlight very strongly in these wave-
lengths, and indeed this is the case. The absorptance of white paint to
energy from the sun is only on the order of 0.10—much less than ε for
the energy it receives.

10.3 Simple radiant heat exchange between two
surfaces

One body enclosed by another

Parallel plates. Equation (10.8) is not a useful design equation in its
present form. But when we substitute e1 = ε1σT 4

1 and e2 = ε2σT 4
2 and
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use ε = α, we get

q1 to 2 = σ
ε1ε2T 4

1 − ε2ε1T 4
2

ε1 + ε2 − ε1ε2

or

q1 to 2 = 1(
1
ε1
+ 1
ε2
− 1

) σ
(
T 4

1 − T 4
2

)
(10.11)

Comparing eqn. (10.11) with eqn. (10.2), we may identify

F1 to 2 = 1(
1
ε1
+ 1
ε2
− 1

) (10.12)

for infinite parallel plates. Notice, too, that if the surfaces are both black,
ε1 = ε2 = 1 and

F1 to 2 = 1 = F1 to 2 (10.13)

which, of course, is what we would expect.

Example 10.1

A stainless steel plate at 100◦C faces a firebrick wall at 500◦C. Esti-
mate the heat flux and radiation heat transfer coefficient, hr .

Solution. From Table 10.1, we read the emittances of stainless steel
and firebrick as approximately 0.6 and 0.75. Thus,

q1 to 2 = 1(
1

0.75
+ 1

0.6
− 1

) 5.67× 10−8
[
(773 K)4 − (373 K)4

]

= 9573 W/m2

This can be put in the form of a radiation heat transfer coefficient :

hr = q1 to 2

T1 − T2
= 9573

500− 100
= 24 W/m2·◦C

This heat transfer coefficient is rather low. If we had done the calcula-
tion for a brick wall at 1500◦C, we would have found that q = 280,000
W/m2 and hr = 200 W/m2·◦C. Thus, we see that hr rises in a fairly
dramatic nonlinear way with T1.
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General case in which one body surrounds another

A pair of parallel plates is a special case of the general situation in
which one body surrounds another. The general situation is suggested
in Fig. 10.6, and it includes such configurations as concentric cylinders
or a sphere within a sphere. As long as both surfaces emit diffusely, the
factor F1 to 2 in this case takes either of two limiting forms, which we
state, for the moment, without proof.

F1 to 2 =




1[
1
ε1
+ A1

A2

(
1
ε2
− 1

)] for diffusely
reflecting bodies

1[
1
ε1
+ 1
ε2
− 1

] for specularly
reflecting bodies

(10.14)

The latter result is interestingly identical to eqn. (10.12), even though
that result was true for either specular or diffuse radiation.

Radiant heat exchange between two finite black bodies

Some evident results. Let us now return to the purely geometric prob-
lem of evaluating the view factor, F1−2. Although the evaluation of F1−2

is also used in the calculation of heat exchange among nonblack bodies,
it is the only correction of the Stefan-Boltzmann law that we need for
black bodies.

Figure 10.7 shows three elementary situations in which the value of
F1−2 is evident under the definition:

F1−2 = fraction of energy emitted by (1) that reaches (2)

Figure 10.6 Heat transfer between an
enclosed body and the body surrounding
it.
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Figure 10.7 Some configurations for which the value of the
view factor is immediately apparent.

A second apparent result in regard to the view factor is that all the
energy leaving a body (1) reaches something else. Thus, conservation of
energy requires

1 = F1−1 + F1−2 + F1−3 + · · · + F1−n (10.15)

where (2), (3),…,(n) are all of the bodies in the neighborhood of (1).
Figure 10.8 shows a representative situation in which a body (1) is sur-
rounded by three other bodies. It sees all three bodies, but it also views
itself, in part. This accounts for the inclusion of the view factor, F1−1 in
eqn. (10.15).

By the same token, it should also be apparent from Fig. 10.8 that
the kind of sum expressed by eqn. (10.15) would also be true for just a
portion of what is seen by surface 1. Thus,

F1−(2+3) = F1−2 + F1−3

Of course, such a sum makes sense only when all the view factors are
based on the same viewing surface (surface 1 in this case). One might be
tempted to write this sort of sum in the opposite direction, but it would
clearly be untrue:

F(2+3)−1 ≠ F2−1 + F3−1
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Figure 10.8 A body (1) that views three other bodies and itself
as well.

since each view factor is for a different viewing surface—(2+ 3), 2, and
3 in this case.

Example 10.2

A jet of liquid metal at 2000◦C pours from a crucible. It is 3 mm
in diameter. A 5 cm diameter cylindrical radiation shield surrounds
the jet through an angle of 330◦, but there is a 30◦ slit in it. The jet
is otherwise surrounded by a large cubic room at 30◦C. How much
radiant energy reaches the room per meter of length of the shield if
it is legitimate to assume that the jet and the shield are both black
under these conditions?

Solution. There are two paths by which radiant energy can reach
the room: directly through the slit, and from the shield to the room.
Clearly, Fjet-room = 30/360 = 0.0833 and Fjet-shield = 330/360 =
0.9167. Then

Qjet-room = Fjet-roomAjetσ
(
T 4

jet − T 4
room

)

= 0.0833

[
π(0.003) m2

m length

](
5.67× 10−8

)(
22734 − 3034

)
= 1188 W/m

The shield temperature is obtained by balancing the heat it re-
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ceives with the heat it emits:

Fjet-shieldAjetσ
(
T 4

jet − T 4
shield

)
= Fshield-roomAshieldσ

(
T 4

shield − T 4
room

)
The view factor Fshield-room can be approximated as unity. (Notice that
we neglect heat transfer from the inside of the shield to the room.)
Then

0.9167(0.003)
1(0.050)

(
22734 − T 4

shield

)
= T 4

shield − 3034

or

Tshield =




3034 + 0.9167(0.003)
1(0.050)

(2273)4

1+ 0.9167(0.003)
1(0.050)




1/4

= 1088 K

It is now possible to calculate Qshield-room:

Qshield-room = Fshield-roomAshieldσ
(
T 4

shield − T 4
room

)
= 1

[
π(0.05) m2

m length

](
5.67× 10−8

)(
10884 − 3034

)
= 12,400 W/m

so the total heat transfer is

Qshield-room +Qjet-room = 13,590 W/m

most of which is re-emitted by the shield.
Notice that the unshielded jet would have transferred

1
0.0833

(1188) = 14,260 W/m

to the room. Therefore, this particular shield has accomplished only
a 4.7% reduction of heat transfer. To be effective, the shield would
have to have a low emittance.

Calculation of the black-body view factor, F1−2. Consider two elements,
dA1 and dA2, of larger black bodies (1) and (2), as shown in Fig. 10.9. The
entire body (1) and the entire body (2) are isothermal. Since element dA2

subtends a solid angle dω1, we use eqn. (10.5) to write

dQ1 to 2 = (i1dω1)(dA1 cosβ1)
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Figure 10.9 Radiant exchange between two black elements
that are part of the bodies (1) and (2).

But from eqn. (10.6b),

i1 = σT 4
1

π
Furthermore,

dω1 = dA2 cosβ2

s2

where s is the distance from (1) to (2). Thus,

dQ1 to 2 = σT 4
1

π

(
cosβ1 cosβ2 dA1dA2

s2

)
By the same token,

dQ2 to 1 = σT 4
2

π

(
cosβ2 cosβ1 dA2dA1

s2

)
Then

Qnet = σ
(
T 4

1 − T 4
2

)∫
A1

∫
A2

cosβ1 cosβ2

πs2
dA1dA2 (10.16)
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The view factors F1−2 and F2−1 are immediately obtainable from eqn.
(10.16). If we compare this result with Qnet = F1−2A1σ(T 4

1 −T 4
2 ), we get

F1−2 = 1
A1

∫
A1

∫
A2

cosβ1 cosβ2

πs2
dA1dA2 (10.17a)

From the inherent symmetry of the problem, we can also write

F2−1 = 1
A2

∫
A2

∫
A1

cosβ2 cosβ1

πs2
dA2dA1 (10.17b)

It follows from eqns. (10.17a) and (10.17b) that

∫
A1

∫
A2

cosβ1 cosβ2

πs2
dA1dA2 = A1F1−2 = A2F2−1 (10.18)

This reciprocity relation will prove to be very useful in subsequent work.

The direct evaluation of F1−2 from eqn. (10.17a) becomes fairly in-
volved, even for the simplest configurations. Siegel and Howell [10.2] pro-
vide an unusually comprehensive discussion of such calculations and a
large catalog of their results. We shall not actually use eqns. (10.17a) and
(10.17b) directly but shall instead refer the interested reader to Siegel and
Howell for the results of such calculations. Siegel and Howell use a con-
tour integral technique to evaluate F1−2 and F2−1 in place of eqns. (10.17a)
and (10.17b). The method is more sophisticated, but if one actually has
to perform the integration, that formulation can simplify the task.

We list some typical results of the calculation in Tables 10.2 and 10.3.
Table 10.2 gives calculated values of F1−2 for two-dimensional bodies—
various configurations of cylinders and strips that approach being infi-
nite in length. Table 10.3 gives F1−2 for some three-dimensional config-
urations.

Many of these and other results have been evaluated numerically and
presented in graphical form for easy reference. Figure 10.10, for example,
includes the solutions for configurations 1, 2, and 3 from Table 10.3. The
reader should study these results and be sure that the tendencies they
show make sense. Is it clear, for example, that F1−2 �→ constant, which
is < 1 in each case, as the abscissa becomes large? Can you locate the
right-hand element of Fig. 10.7 in Fig. 10.10? And so forth.



Table 10.2 View factors for a variety of two-dimensional con-
figurations (infinite in extent normal to the paper)

Configuration Equation

1.
F1−2 = F2−1 =

√
1+

(
h
w

)2

−
(
h
w

)

2.

F1−2 = F2−1 = 1− sin(α/2)

3.
F1−2 = 1

2


1+ h

w
−

√
1+

(
h
w

)2



4.

F1−2 = (A1 +A2 −A3)
/
2A1

5.

F1−2 = r
b − a

[
tan−1 b

c
− tan−1 a

c

]

6.
Let X = 1+ s/D. Then:

F1−2 = F2−1 = 1
π

[√
X2 − 1+ sin−1 1

X
−X

]

7.

F1−2 = 1, F2−1 = r1

r2
, and

F2−2 = 1− F2−1 = 1− r1

r2
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Table 10.3 View factors for some three-dimensional configurations

Configuration Equation

1. Let X = a/c and Y = b/c. Then:

F1−2 = 2
πXY


ln

[
(1+X2)(1+ Y 2)

1+X2 + Y 2

]1/2

−X tan−1 X − Y tan−1 Y

+X
√

1+ Y 2 tan−1 X√
1+ Y 2

+ Y
√

1+X2 tan−1 Y√
1+X2




2. Let H = h/Q and W = w/Q. Then:

F1−2 = 1
πW


W tan−1 1

W
−

√
H2 +W 2 tan−1

(
H2 +W 2

)−1/2

+H tan−1 1
H
+ 1

4
ln



[
(1+W 2)(1+H2)

1+W 2 +H2

]

×
[
W 2(1+W 2 +H2)
(1+W 2)(W 2 +H2)

]W2 [
H2(1+H2 +W 2)
(1+H2)(H2 +W 2)

]H2




3.

Let R1 = r1/h, R2 = r2/h, and X = 1+
(

1+ R2
2

)/
R2

1 . Then:

F1−2 = 1
2

[
X −

√
X2 − 4(R2/R1)2

]

4.

Concentric spheres:

F1−2 = 1, F2−1 = (r1/r2)2, F2−2 = 1− (r1/r2)2
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Figure 10.11 The view factor for three very small surfaces
“looking at” three large surfaces (A1  A2).

508
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Figure 10.11 shows view factors for another kind of configuration—
one in which one area is very small in comparison with the other one.
Many such solutions exist because they are somewhat less difficult to
calculate, and they can often be very useful in practice.

Example 10.3

A heater (h) as shown in Fig. 10.12 radiates to the partially coni-
cal shield (s) that surrounds it. If the heater and shield are black,
calculate the net heat transfer from the heater to the shield.

Solution. First imagine a plane (i) laid across the open top of the
shield:

Fh−s + Fh−i = 1

But Fh−i can be obtained from Fig. 10.10 or the equation in case 3 of
Table 10.3, for R1 = r1/h = 5/20 = 0.25 and R2 = r2/h = 10/20 =
0.5. The result is Fh−i = 0.192. Then

Fh−s = 1− 0.192 = 0.808

Figure 10.12 Heat transfer from a disc heater to its radiation shield.
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Thus,

Qnet = Fh−sAhσ
(
T 4
h − T 4

s

)
= 0.808

(
π
4

0.12
)

5.67× 10−8
[
(1200+ 273)4 − 3734

]
= 1687 W

Example 10.4

Suppose that the shield in Example 10.3 is heating the region where
the heater is presently located. What would Fs−h be?

Solution. From eqn. (10.18) we have

AsFs−h = AhFh−s

But the frustrum-shaped shield has an area of

As = π
2
(0.2+ 0.1)

√
0.052 + 0.202 = 0.0971 m2

and

Ah = π
4
(0.1)2 = 0.007854 m2

so

Fs−h = 0.007854
0.0971

(0.808) = 0.0654

Example 10.5

Verify F1−2 for case 4 in Table 10.2.

Solution. Multiply F1−2 + F1−3 = 1 by A1:

A1F1−2 +A1F1−3 = A1

Likewise,

A2F2−1 +A2F2−3 = A2

and

A3F3−1 +A3F3−2 = A3
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Then use A2F2−1 = A1F1−2, A3F3−1 = A1F1−3, and A3F3−2 = A2F2−3

to get

A1F1−2 +A1F1−3 = A1

A1F1−2 +A2F2−3 = A2

A1F1−3 +A2F2−3 = A3

This is easily solved for F1−2:

F1−2 = A1 +A2 −A3

2A1

Example 10.6

Find F1−2 for the configuration of two offset squares of area A, as
shown in Fig. 10.13.

Solution.

2AF(1+3)−(4+2) = AF1−4 +AF1−2 +AF3−4 +AF3−2

2F(1+3)−(4+2) = 2F1−4 + 2F1−2

And F(1+3)−(4+2) can be read from Fig. 10.10
(
at φ = 90, w/Q = 1

2 ,

and h/Q = 1
2

)
as 0.245 and F1−4 as 0.20. Thus,

F1−2 = (0.245− 0.20) = 0.045

Figure 10.13 Radiation between two
offset perpendicular squares.
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10.4 Heat transfer among gray bodies

Electrical analogy for gray body heat exchange

A rather clever adaptation of the electric analogy for calculating heat ex-
change among gray bodies was developed by Oppenheim [10.3] in 1956.
It requires the definition of two new quantities:

H W/m2 ≡ irradiance =
{

flux of energy that irradiates
the surface

and

B W/m2 ≡ radiosity =
{

total flux of radiative energy
away from the surface

The radiosity can be expressed as the sum of the irradiated energy that
reflects away from the surface and the radiation emitted from it. Thus,

B = ρH + εeb (10.19)

We can immediately write the net heat flux from any particular surface
as the difference between B and H for that surface. Then, with the help
of eqn. (10.19), we get

qnet = B −H = B − B − εeb
ρ

(10.20)

This can be rearranged as

qnet = ε
ρ
eb − 1− ρ

ρ
B (10.21)

As long as the surface is opaque (τ = 0), ε = α = 1−ρ, eqn. (10.21) gives

qnetA = Qnet = eb − B
ρ/εA

= eb − B
(1− ε)

/
εA

(10.22)

Equation (10.22) is a form of Ohm’s law, which tells us that (eb − B) can
be viewed as a driving potential for transferring heat away from a surface
through an effective surface resistance, (1− ε)/εA.

Now consider heat transfer from one infinite gray plane to another
parallel with it, in these terms. Radiant energy flows past an imaginary
surface, parallel with the first infinite plate in Fig. 10.14 but quite close
to it. There is no way of telling whether this energy comes from a real
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Figure 10.14 The electrical circuit analogy for radiation be-
tween two gray infinite plates.

surface or a black body. Therefore, we can isolate radiation at the surface
and treat radiation from just above the surface as though it were from a
black body. Thus,

Qnet = A1F1−2 (B1 − B2) =
B1 − B2(

1

A1F1−2

) (10.23)

which is again a form of Ohm’s law. The radiosity difference (B1−B2), can
be imagined to drive heat through the geometrical resistance 1/A1F1−2

that describes the field of view between the two surfaces.
When two grey surfaces exchange heat by thermal radiation, we have

a surface resistance for each surface and a geometric resistance due to
their configuration. The electrical circuit shown in Fig. 10.14 expresses
the analogy and gives us means for calculating Qnet in accordance with
Ohm’s law. Recalling that eb = σT 4, we obtain

Qnet = eb1 − eb2∑
resistances

= σ
(
T 4

1 − T 4
2

)
(

1− ε
εA

)
1

+ 1

A1F1−2
+

(
1− ε
εA

)
2

(10.24)

or, if we remember that F1−2 = 1 and A1 = A2 for infinite parallel plates,

q1−2 =
1(

1

ε1
+ 1

ε2
− 1

)σ (
T 4

1 − T 4
2

)
(10.11)

This result is one that we arrived at during the derivation of Kirch-
hoff’s law. But the method we have used to develop it here can quickly
be extended to develop other results as well.
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Example 10.7

Evaluate the heat transfer between one gray body and another enclos-
ing it, as shown in Fig. 10.6.

Solution. The electrical circuit analogy is exactly the same as that
shown in Fig. 10.14, and F1−2 is still unity. Therefore,

Qnet = qnetA1 =
σ
(
T 4

1 − T 4
2

)
(

1− ε1

ε1A1
+ 1

A1
+ 1− ε2

ε2A2

) (10.25)

Therefore,

qnet = 1
1
ε1
+ A1

A2

(
1
ε2
− 1

)
︸ ︷︷ ︸

F1−2

σ
(
T 4

1 − T 4
2

)

which is the result we anticipated in eqn. (10.14) for diffusely reflect-
ing bodies.

Example 10.8

Derive F2−1 for the enclosed bodies shown in Fig. 10.6.

Solution. By the same rationale used in Example 10.7, but replacing
the center resistance with 1/A2F2−1, we get

F2−1 = 1
1
ε2
+ A2

A1

(
1
ε1
− 1

)
+

(
1

F2−1
− 1

)

To eliminate the unknown view factor, F2−1, from this result, we use
the reciprocity relation, eqn. (10.18):

F2−1 = A1

A2
F1−2︸ ︷︷ ︸
=1

= A1

A2

so

F2−1 = 1
1
ε1

A2

A1
+

(
1
ε2
− 1

) (10.26)
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Use of the electrical circuit analogy when more than one gray
body is involved in heat exchange

Let us first consider a three-body transaction, as pictured in Fig. 10.15.
Body (3) either might be insulated or might exchange a net amount of
heat with bodies (1) and (2), but in either case it absorbs and reemits
energy. If it is insulated, there is no net surface heat transfer and we can
eliminate one leg of the circuit, as shown in Fig. 10.15.

The circuit for such an exchange is not so easy to analyze as the in-
line circuits we have previously analyzed. In this case, one must sum the
energy exchanges at each of the interior nodes:

node B1 :
eb1 − B1

1− ε1

ε1A1

= B1 − B2

1
A1F1−2

+ B1 − B3

1
A1F1−3

(10.27)

node B2 :
eb2 − B2

1− ε2

ε2A2

= B2 − B1

1
A1F1−2

+ B2 − B3

1
A2F2−3

(10.28)

node B3 :
eb3 − B3

1− ε3

ε3A3

or 0 = B3 − B1

1
A1F1−3

+ B3 − B2

1
A2F2−3

(10.29)

These equations must be solved simultaneously for the three unknowns,
B1, B2, and B3. When they are solved, one can compute the net heat
transfer to or from any body (a) as a result of all surrounding bodies (i)
as

Qnet =
∑
i

(
Bi − Ba

1
/
(AaFa−i)

)
(10.30)

Thus far, we have considered only the specified wall temperature
boundary condition on each of the bodies involved in heat exchange.
Consider two other possibilities.

The insulated wall. If q = 0 at a wall, then the nodal sum at that wall
vanishes. Thus, when the third body in Fig. 10.15 is insulated, eb3 = B3

in eqn. (10.29). This means that the insulated body participates in the
transaction as though it were black. In this case, the right-hand circuit
in Fig. 10.15 can be treated as a series-parallel circuit, since all the heat
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Figure 10.15 The electrical circuit analogy for radiation
among three gray surfaces.

from body (1) flows to body (2). Then

Qnet =
eb1 − eb2

1− ε1

ε1A1
+ 1

1

1 /(A1F1−3) + 1 /(A2F2−3)
+ 1

1 /(A1F1−2)

+ 1− ε2

ε2A2

(10.31)

However when the third body is heated or cooled, the three equations
(10.27), (10.28), and (10.29) have to be used and this simplification does
not apply.

The specified wall heat flux case. When the heat flux leaving the sur-
face is known, eqn. (10.22) requires that (eb − B) be known for that sur-
face. This, too, can greatly simplify the solution of sets of equations such
as (10.27), (10.28), and (10.29).
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Figure 10.16 Illustration for
Example 10.9.

Example 10.9

Two very long strips 1 m wide and 2.33 m apart face each other,
as shown in Fig. 10.16. (a) Find Qnet W/m from one to the other if
the surroundings are cold and black. (b) Find Qnet W/m if they are
connected by an insulated diffuse reflector between the edges on both
sides. (c) Evaluate the temperature of the reflector in part (b). Assume
(Tsurroundings)4  T 4

1 or T 4
2 .

Solution. From Fig. 10.10, we read F1−2 = 0.2 = F2−1. Then the
three nodal equations (10.27), (10.28), and (10.29) become

1451− B1

2.333
= B1 − B2

5
+ B1 − B3

1

1− 0.2

459.3− B2

1
= B2 − B1

5
+ B2 − B3

1

1− 0.2

0 = B3 − B1

1

1− 0.2

+ B3 − B2

1

1− 0.2

where the latter does not apply in case (a). Thus,

B1−0.14B2−0.56B3 = 435

−B1 +10B2 −4B3 = 2296.5
−B1 −B2 +2B3 = 0

Without the reflecting shield, we delete the third equation and neglect
B3, since the surroundings are very cold and black. Then the first two



518 Radiative heat transfer §10.4

equations reduce to

B1 − 0.14B2 = 435
−B1 + 10B2 = 2296.5

}
so

{
B1 = 473.78 W/m
B2 = 277.03 W/m

Thus, the net flow from (1) to (2) is quite small:

Q1−2no shield =
B1 − B2

1 /(A1F1−2)
= 39.35 W/m

When the shield is in place, we must solve the full set of nodal
equations. This can be done manually, by the use of determinants, or
with matrix algebra methods that have been packaged as computer
subroutines. The result is

B1 = 987.7 B2 = 657.4 B3 = 822.6

Then, from eqn. (10.30), we get

Qnet = 1
m2

m

(
987.7− 657.4

1/0.2
+ 822.6− 657.4

1/0.8

)
W
m2

= 198.5 W/m

Notice that because node (3) is insulated, we could also have used
eqn. (10.31) to get Qnet:

Qnet =
5.67× 10−8

(
4004 − 3004

)
0.7
0.3

+ 1

1

1/0.8+ 1/0.8
+ 0.2

+ 0.5
0.5

= 198.5 W/m

The result, of course, is the same. We note that the presence of the
reflector increases the net heat flow from (1) to (2).

The temperature of the reflector (3) is obtained from

Q3 to (1 or 2) = 0 = eb3 − B3 = 5.67× 10−8T 4
3 − 822.6

so

T3 = 347.06 K

Holman [10.4] presents a very nice discussion of the application of the
electrical circuit analog to more complicated problems, and he provides a
number of useful examples. However, the digital computer now makes it
more feasible to approach complicated problems directly with numerical
methods. Sparrow and Cess [10.1] provide an excellent discussion of
these methods. Although they generally lie beyond the scope of this
text, it is instructive to treat one important class of such solutions.
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Figure 10.17 An enclosure surrounded by gray and diffuse,
isothermal and constant-heat-flux segments.

Algebraic solution of compound radiation problems

Radiant heat exchange in gray, diffuse enclosures. An enclosure can
consist of any number of surfaces participating in radiant energy ex-
change. For example, the case shown in Fig. 10.16 could have been
treated as a rectangular enclosure if, in addition to the two walls and
the shield, we had assumed a fictitious surface of 0 K to make up the
fourth side.

An enclosure formed by n surfaces is shown in Fig. 10.17. We assume
that

• Each surface emits or reflects diffusely and it is gray and opaque
(ε = α, ρ = 1− ε).

• Either each surface is at a uniform temperature or its heat flux is a
uniform known value and its emittance is known.

• The view factor, Fi−j , between any two surfaces i and j is known.

• Conduction and convection within the enclosure can be neglected.

We are interested in determining the heat fluxes at the surfaces where
temperatures are specified, and vice versa.

The rate of heat loss from the ith surface of the enclosure can conve-
niently be written in terms of the radiosity, Bi, and the incident surface
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heat flux, Hi [see eqn. (10.22)].

qi = Bi −Hi = εi
1− εi

(
σT 4

i − Bi
)

(10.32)

where

Bi = ρiHi + εiebi = (1− εi)Hi + εi σT 4
i (10.33)

However, AiHi, the incident radiant heat transfer rate to the surface i, is
the sum of energies reaching i from all other surfaces, including itself:

AiHi =
n∑
j=1

AjBjFj−i =
n∑
j=1

BjAiFi−j

where we have used the reciprocity rule, AjFj−i = AiFi−j . Then

Hi =
n∑
j=1

BjFi−j (10.34)

It follows from eqns. (10.33) and (10.34) that

Bi = (1− εi)
n∑
j=1

BjFi−j + εi σT 4
i (10.35)

When all the surface temperatures are specified, eqn. (10.35) can be writ-
ten for each surface. This yields n algebraic equations that can be solved
for the n unknown B’s. The rate of heat loss, Qi, from the ith surface
(i = 1,2, . . . , n) can then be obtained from eqn. (10.32).

For those surfaces where heat fluxes are prescribed, we can eliminate
the εiσT 4

i term in eqn. (10.35) using eqn. (10.32). We can still solve for
the B’s, and eqn. (10.32) can be solved for the unknown temperature of
that particular surface.

Example 10.10

Two sides of a long triangular duct, as shown in Fig. 10.18, are made of
stainless steel (ε = 0.5) and are maintained at 500◦C. The third side
is of copper (ε = 0.15) and is at a uniform temperature of 100◦C.
Calculate the rate of heat transferred to the copper base per meter of
length of the duct.
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Figure 10.18 Illustration for Example 10.10.

Solution. Assume the duct walls to be gray and diffuse, the fluid
in the duct to be radiatively inactive, and convection to be negligible.
The view factors can be calculated from configuration (4) of Table 10.2
or Example 10.5:

F1−2 = A1 +A2 −A3

2A1
= 5+ 3− 4

10
= 0.4

Similarly, F2−1 = 0.67, F1−3 = 0.6, F3−1 = 0.75, F2−3 = 0.33, and
F3−2 = 0.25. The surfaces cannot “see” themselves, so F1−1 = F2−2 =
F3−3 = 0. We therefore use eqn. (10.35) to write the three algebraic
equations for the three unknowns, B1, B2, and B3.

B1 =
(

1− ε1︸ ︷︷ ︸
0.85

)(
F1−1︸ ︷︷ ︸

0

B1 + F1−2︸ ︷︷ ︸
0.4

B2 + F1−3︸ ︷︷ ︸
0.6

B3

)
+ ε1︸︷︷︸

0.15

σT 4
1

B2 =
(

1− ε2︸ ︷︷ ︸
0.5

)(
F2−1︸ ︷︷ ︸
0.67

B1 + F2−2︸ ︷︷ ︸
0

B2 + F2−3︸ ︷︷ ︸
0.33

B3

)
+ ε2︸︷︷︸

0.5

σT 4
2

B3 =
(

1− ε3︸ ︷︷ ︸
0.5

)(
F3−1︸ ︷︷ ︸
0.75

B1 + F3−2︸ ︷︷ ︸
0.25

B2 + F3−3︸ ︷︷ ︸
0

B3

)
+ ε3︸︷︷︸

0.5

σT 4
3

If there were more surfaces, it would be easy to solve this sys-
tem numerically using matrix methods. In this case we can obtain B1
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algebraically:

B1 = 0.232σT 4
1 − 0.319σT 4

2 + 0.447σT 4
3

Equation (10.32) gives the rate of heat lost by surface 1 as

Q1 = A1
ε1

1− ε1

(
σT 4

1 − B1

)
= A1

ε1

1− ε1
σ

(
T 4

1 − 0.232T 4
1 + 0.319T 4

2 − 0.447T 4
3

)

= (0.5)
(

0.15
0.85

)
(5.67× 10−8)

×
[
(373)4 − 0.232(373)4 + 0.319(773)4 − 0.447(773)4

]
W/m

= −154.3 W/m

The negative sign indicates that the copper base is gaining heat.

10.5 Gaseous radiation

Absorptance, transmittance, and emittance

We have treated every radiation problem thus far as though heat flow
in the space separating the surfaces of interest were completely unob-
structed. However, all gases and liquids affect the radiation of heat
through them to some extent. We have ignored this effect in air because
it is generally quite minor. We now turn our attention briefly to problems
in which we must consider the role of gases (or liquids, for that matter)
as participants in the heat exchange process.

The photons of radiant energy passing through a gaseous region can
be impeded in two ways. Some can be “scattered,” or deflected, in vari-
ous directions, and some can be absorbed into the molecules. Scattering
is a fairly minor influence in most gases unless they contain foreign par-
ticles, such as dust or fog. In cloudless air, for example, we are aware
of the scattering of sunlight only when it passes through many miles of
the atmosphere. Then the shorter wavelengths of sunlight are scattered
(short wavelengths, as it happens, are far more susceptible to scattering
by gas molecules than longer wavelengths, through a process known as
Rayleigh scattering). That scattered light gives the sky its blue hues.

At sunset, sunlight passes through the atmosphere at a shallow angle
for hundreds of miles. Radiation in the blue wavelengths has all been
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Figure 10.19 The attenuation of
radiation through an absorbing (and/or
scattering) gas.

scattered out before it can be seen. Thus, we see only the unscattered
red hues, just before dark.

Radiant energy can be absorbed by molecules only if the appropri-
ate quantum mechanical conditions prevail. For all practical purposes,
monatomic and symmetrical diatomic molecules are transparent to ther-
mal radiation. Thus, the major components of air—N2 and O2—are non-
absorbing; so, too, are H2 and such monatomic gases as argon. Two par-
ticularly important absorbing molecules are CO2 and H2O, which are usu-
ally present in air. Other absorbing gases include ammonia, O3 (ozone),
CO, and SO2.

Figure 10.19 shows radiant energy passing through an absorbing gas
with a monochromatic intensity iλ. As it passes through an element of
thickness dx, the intensity will be reduced by an amount diλ:

diλ = −κλiλ dx (10.36)

where κλ is called the monochromatic absorption coefficient. If the gas
scatters radiation, we replace κλ with γλ, the monochromatic scattering
coefficient. If it both absorbs and scatters radiation, we replace κλ with
βλ ≡ κλ + γλ, the monochromatic extinction coefficient.3 The dimensions
of κλ, βλ, and γλ are all m−1.

Equation (10.36) can be integrated between iλ(x = 0) = iλ0 and
iλ(x) = iλ. The result is

iλ
iλ0

= e−κλx (10.37)

3All three coefficients, κλ, γλ, and βλ, are expressed on a volumetric basis. They
could, alternatively, have been expressed on a mass basis.



524 Radiative heat transfer §10.5

Figure 10.20 The monochromatic absorptance of a 1.09 m
thick layer of steam at 127◦C.

This result is called Beer’s (pronounced Bayr’s) law. The ratio

iλ
iλ0

≡ monochromatic transmittance, τλ, of the gas

as we saw in Chapter 1. Since gases do not normally reflect radiant en-
ergy, τλ + αλ = 1. Thus, eqn. (10.37) gives the monochromatic absorp-
tance, αλ, as

αλ = 1− e−κλx (10.38)

The dependence of αλ on λ is normally very strong. It arises from the
fact that in certain narrow bands of wavelength, radiation will interact
with certain molecules and be absorbed, while radiation with somewhat
higher or lower wavelengths might pass almost unhindered. Figure 10.20
shows the absorptance of steam as a function of wavelength for a vapor
layer of a particular depth.

A comparison of Fig. 10.20 with Fig. 10.2 readily shows why the ap-
parent emittance of the sun, as viewed from the earth’s surface, shows a
number of spiked indentations at certain wavelengths. Several of these
indentations occur at those wavelengths at which water vapor in the air
absorbs the incoming radiation of the sun, in accordance with Fig. 10.20.
The other indentations in Fig. 10.2 occur where ozone and CO2 absorb
radiation. The sun does not exhibit these regions of low emittance; it is
just that much of the radiation in certain wavelength ranges is blocked
from our view and trapped in the upper atmosphere.

Just as α and ε are equal to one another for a given surface, under
certain restrictions, the monochromatic absorption coefficient, κλ, and
the monochromatic emittance of a gas, εgλ , are also related. However,
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Figure 10.21 One-dimensional emission of radiant energy
from within a gas.

while εgλ is dimensionless, κλ has the dimensions of inverse length. To
better see why that should be, consider Fig. 10.21. Figure 10.21a shows
a slab of thickness Q in which molecules at various depths are emitting
energy. If the gas is isothermal and at steady state, the emittance will
be balanced uniformly by absorption. Thus, if we consider a sufficiently
thin slice, as shown in Fig. 10.21b, it will be accurate to conceive of all
of the absorbing and emitting molecules being located in its center, as
shown in Fig. 10.21c. Then an energy balance gives, for Q �→ 0:

qin = 2
(
κλ

1
m

)(
Q
2

m3

m2

)(
eb

W
m2

)
= 2εgλeb = qout

or

κλ = lim
Q �→0

εgλ
Q/2

(10.39)

For a gas that is kept at a temperature different from the surroundings
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to or from which it radiates, Hottel and Sarofim [10.5] quote the result:

αg =
(

Tgas

Tsurroundings

)b
εg (10.40)

where b is 0.65 for CO2 and 0.45 for H2O and where εg is the total emit-
tance, evaluated as

εg = εg
(
Tsurroundings, pLeTsurr./Tg

)
(10.41)

Notice that for a thin slice of gas of thickness Q/2 in equilibrium with its
surroundings, αg = εg , and eqn. (10.38) gives

αg = 1− e−κ(Q/2) � 1− 1+ Qκ/2 = εg

which is consistent with eqn. (10.39).
It is therefore clear that εg for an emitting gas depends on the thick-

ness of the emitting layer. Notice, too, that εg also increases if the
molecules are packed more closely by virtue of an increase in pressure.
Thus, εg is a fairly complicated function of temperature, pressure, size,
and configuration of a gaseous region.

Hottel and Sarofim provide empirical correlations of εg , using a single
parameter, Le ≡ mean beam length, to represent both the size and the
configuration of a gaseous region. The mean beam length is defined as

Le ≡ 4 (volume of gas)
boundary area that is irradiated

(10.42)

Thus, for two infinite parallel plates a distance Q apart, Le = 4AQ/2A =
2Q. Some other values of Le for volumes radiating to all points on their
boundaries (unless otherwise noted) are

• For a sphere of diameter D, Le = 2D/3

• For an infinite cylinder of diameter D, Le = D

• For a cube of side L, radiating to one face, Le = 2L/3

• For a cylinder with height = D, Le = 2D/3

(Siegel and Howell [10.2] suggest that practical accuracy will be improved
if these values are reduced by between 0% and 20%, depending on the
configuration.)
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We then provide empirical correlations of the form

εg = f1 [total pressure, L · (partial pressure of

absorbing component)] · f2 [T , L · (partial pressure)] (10.43)

where the experimental functions f1 and f2 are plotted in Figs. 10.22 and
10.23 for CO2 and H2O, respectively.

Radiative heat transfer among gases

Consider the problem of a hot gas—say, the products of combustion—in
a black container. We are now in a position to calculate the net heat flow
from the gas to the container in such circumstances.

Example 10.11

A long cylindrical combustor 40 cm in diameter contains a gas at
1200◦C consisting of 80% N2 and 20% CO2 at 1 atm. How much heat
must we remove from the walls to keep them at 300◦C?

Solution. First calculate qgas to wall. To do this, we note that Le =
D = 0.4 m and pCO2 = 0.2 atm. Then Fig. 10.23a gives f1 as 0.098
and Fig. 10.23b gives f2 as 1, so εg = 0.098. The view factor is unity,
so

qgas to wall = σFg−wεgT 4
g = 5.67× 10−8(0.098)(1200+ 273)4

= 26,160 W/m2

Next we need αg to calculate qwall to gas. Using eqns. (10.40) and
(10.41), we get

αg =
(

1200+ 273
300+ 273

)0.65

(0.091) = 0.168

so, since the wall “sees” itself through gas with this absorptance, we
use Fw−g = 1 and obtain

qwall to gas = σFw−gαgT 4
w = 5.67× 10−8(0.168)(573)4

= 1027 W/m2

Thus,

qnet = 25,133 W/m2



Figure 10.22 Functions used to predict εg = f1f2 for water
vapor in air.
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Figure 10.23 Functions used to predict εg = f1f2 for CO2 in air.
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or

Qnet/m length = π(0.4)(25,133) = 31,583 W/m

The problem of heat transfer among gases and gray bodies is beyond
the scope of this book. Sparrow and Cess [10.1] provide a more advanced
treatment of analytical methods for treating the problem. Holman’s un-
dergraduate text [10.4] shows how to apply the electrical analogy to prob-
lems of gaseous radiation.

Finally, it is worth noting that gaseous radiation is frequently less
important than one might imagine. Consider, for example, two flames: a
bright orange candle flame and a “cold-blue” hydrogen flame. Both have
a great deal of water vapor in them, as a result of oxidizing H2. But the
candle will warm your hands if you place them near it and the hydrogen
flame will not. Yet the temperature in the hydrogen flame is higher. It
turns out that what is radiating both heat and light from the candle are
small solid particles of almost thermally black carbon. The CO2 and H2O
in the flame actually contribute relatively little to radiation.

10.6 Solar energy

The sun as an energy source

The sun bestows energy on the earth at a rate4 just over 1.7× 1014 kW.
We absorb most of it by day, and that which is absorbed is radiated away
by night. If the world population is 6 billion people, each of us has a
renewable energy birthright of about 28,000 kW. Of course, we can use
very little of this. Most of it must go to sustaining those processes that
make the earth a fit place to live—to creating weather and to supplying
the flora and fauna we live with.

In the United States alone, we consume energy at the rate of about
3 × 109 kW. The interesting thing about this enormous consumption is
that almost none of it comes from our renewable energy birthright. In-
stead, we are burning up the planet to get it. It is interesting to notice
that if we price electrical energy at 9 cents/kWh, and thermal energy at
3, the average American could steadily buy about 40 kW by investing all
earnings in nothing but energy. This is only four times our per capita rate
of energy consumption in this country—a fact that reflects the intimate

4This and other numbers were originally derived from [10.6].
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connection between energy and money.

There is little doubt that our short-term needs—during the next cen-
tury or so—can be met by our dwindling fossil fuels and, perhaps, nuclear
power, combined with a less wasteful attitude than most of us have been
raised with. But our long-term hope for an adequate energy supply prob-
ably lies in the sun.5 Solar energy can be made useful in many different
forms; some possibilities include:

• Hydroelectric power. (There is no hope for a dramatic increase in
this source because much of the available rainfall runoff has already
been harnessed.)

• The combustion of renewable organic matter. (Wood has been used
in this way for years, and we now recognize at least the possibility
of replacing gasoline with methanol.)

• Offshore thermal energy conversion (OTEC). (This involves the po-
tential use of large floating heat engines operating offshore in trop-
ical ocean waters.)

• Direct solar heating.

• Beaming of energy collected in space to the earth’s surface by mi-
crowave transmission.

• Photovoltaic collection.

• The energy of ocean waves.

Notice that some of these sources lend themselves to heat produc-
tion and some lend themselves to work production. Any time we turn
thermal energy to electricity or any other form of work, the Second Law
of Thermodynamics exacts a severe tax on the energy. Usually, we can
only recover about one-third of the total thermal energy as work. Electri-
cal heating, for example, is inherently wasteful because we first sacrifice
two-thirds of the energy present in the fuel, or even more from the sun,
in producing electricity. Then we degrade the electricity back to heat.

5Nuclear fusion—the process by which we might manage to create mini-suns upon
the earth—might also be a hope of the future.
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Figure 10.24 The approximate distribution of the flow of the
sun’s energy to and from the earth’s surface.

Distribution of the sun’s energy

Figure 10.24 shows what becomes of the solar energy that impinges on
the earth if we average it over the year and the globe, and we consider all
kinds of weather. Only 47% of it actually reaches the earth’s surface. The
lower left-hand portion of the figure shows how this energy is, in turn,
returned to the atmosphere and to space.

The heat flux from the sun to the outer edge of the atmosphere is
1367 W/m2 when the sun is at a mean distance from the earth. We have
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seen that 47% of this, or 642 W/m2, reaches the earth’s surface. The so-
lar radiation that is felt at the earth’s surface includes direct radiation
that has passed through the atmosphere; diffuse radiation from the sky;
and reflected radiation from snow, water, or other features on the sur-
face. These arriving and departing flows of solar energy present some
interesting problems.

A substantial fraction of the sun’s energy arrives at the earth’s surface
in the ultraviolet and visible wavelengths. However, it is reradiated from
the relatively cool surface of the earth in wavelengths that are generally
far longer. We have already noted thatα and ε for objects that are subject
to solar radiation might differ greatly as a consequence of this.

Another important consequence of the difference between incoming
and outgoing radiation wavelengths is called the greenhouse effect. We
have noted that a glass in a greenhouse admits shortwave energy from the
sun selectively. This energy is absorbed and reradiated at a much lower
temperature—a temperature at which the major heat radiation is accom-
plished in wavelengths above 3 or 4 µm. But this, in turn, is the wave-
length range where glass becomes virtually opaque. The heat is therefore
trapped inside.

If we look again at Fig. 10.2, we see that our own sky creates a partial
greenhouse effect if it is heavily loaded with CO2, H2O, and, to a lesser
extent, ozone. The escape of long-wavelength reradiated energy from
the earth’s surface will be reduced in the neighborhood of λ = 1.4, 1.9,
and 2.7 µm. But it will be even more strongly impeded at certain higher-
wavelength bands not shown in Fig. 10.2. Water, of course, will condense
out in rain or snow, but CO2 must be removed by photosynthesis, and it
can build up without limit.

A major objection to the continued use of fossil fuels, or renewable
organic fuels, is that we are loading the atmosphere with CO2 faster than
our flora can remove it. The long-range effect of this buildup could be
a significant rise in the average temperature of the earth’s atmosphere,
with accompanying climatic changes. These changes are hard to predict
accurately but remain potentially dangerous.

The potential for solar power

With so much solar energy falling upon all parts of the world, and with
the apparent safety, reliability, and cleanliness of most—but not all—
schemes for utilizing solar energy, one might ask why we do not generally
use solar power already. The reason is that solar power involves many
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serious heat transfer and thermodynamics design problems. We shall
discuss the problems qualitatively and refer the reader to [10.7], [10.8],
or [10.9] for detailed discussions of the design of solar energy systems.

Solar energy reaches the earth with very low intensity. We began this
discussion in Chapter 1 by noting that human beings can interface with
only a few hundred watts of energy. We could not live on earth if the
sun were not very gentle. It follows that any large solar power source
must concentrate the energy that falls on a very large area. By way of
illustration, suppose that we sought to convert 636 W/m2 of solar energy
into electric power with a 10% thermal efficiency (which is not pessimistic)
during 8 hr of each day. This would correspond with less than 6 W/ft2,
on the average, and we would need 5 square miles of collector area to
match the steady output of an 800 MW power plant.

Hydroelectric power also requires a large collector area, in the form
of the watershed and reservoir behind it. The burning of organic matter
requires a large forest to be fed by the sun, and so forth. Any energy
supply that is served by the sun must draw from a large area of the
earth’s surface. This, in turn, means that solar power systems inherently
involve very high capital investments, and they introduce their own kinds
of environmental complications.

A second problem stems from the intermittent nature of solar devices.
To provide steady power—day and night, rain or shine—requires thermal
storage systems, which are often complex and expensive.

These problems are minimal when one uses solar energy merely to
heat air or water to moderate temperatures (50 to 90◦C). In this case the
efficiency will improve from just a few percent to as high as 70%. Such
heating can be used for industrial processes such as crop drying, or it
can be used on a small scale for domestic heating of air or water.

Figure 10.25 shows a typical configuration of a domestic solar collec-
tor of the flat-plate type. Solar radiation passes through one or more glass
plates and impinges on a plate that absorbs the solar wavelengths. The
absorber plate might be copper painted with a high-absorptance paint.
The glass plates, of course, are almost transparent in the visible range,
and each one admits about 90% of the solar energy that reaches it. Once
the energy is absorbed, it is reemitted as long-wavelength infrared radi-
ation. Glass is almost opaque in this range, and energy is retained in the
collector by a greenhouse effect.

Water flowing through tubes, which are held in close contact with the
absorbing plate, carries the energy away for use. The flow rate is adjusted
to give an appropriate temperature rise.

When the working fluid is to be brought to a fairly high temperature,
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Figure 10.25 A typical flat-plate solar collector.

it is necessary to focus the direct radiation from the sun from a large
area down to a very small region, using reflecting mirrors. Collectors
equipped with a small parabolic reflector, focused on a water or air pipe,
can raise the fluid to between 100 and 200◦C. Any scheme intended to
produce electrical power with a conventional thermal cycle needs to focus
energy in an area ratio on the order of 1000 : 1 if it is to achieve a practical
efficiency.

Problems

10.1 What will ελ of the sun appear to be to an observer on the
earth’s surface at λ = 0.2 µm and 0.65 µm? How do these
emittances compare with the real emittances of the sun? [At
0.65 µm, ελ � 0.77.]

10.2 Plot eλb against λ for T = 300 K and 10,000 K with the help
of eqn. (1.30). About what fraction of energy from each black
body is visible?

10.3 A 0.6 mm diameter wire is drawn out through a mandril at
950◦C. Its emittance is 0.85. It then passes through a long
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cylindrical shield of commercial aluminum sheet, 7 cm in di-
ameter. The shield is horizontal in still air at 25◦C. What is the
temperature of the shield? Is it reasonable to neglect natural
convection inside and radiation outside? [Tshield = 153◦C.]

10.4 A 1 ft2 shallow pan with adiabatic sides is filled to the brim with
water at 32◦F. It radiates to a night sky whose temperature is
360◦R, while a 50◦F breeze blows over it at 1.5 ft/s. Will the
water freeze or warm up?

10.5 A thermometer is held vertically in a room with air at 10◦C and
walls at 27◦C. What temperature will the thermometer read if
everything can be considered black? State your assumptions.

10.6 Rework Problem 10.5, taking the room to be wall-papered and
considering the thermometer to be nonblack.

10.7 Two thin aluminum plates, the first polished and the second
painted black, are placed horizontally outdoors, where they are
cooled by air at 10◦C. The heat transfer coefficient is 5 W/m2·◦C
on both the top and the bottom. The top is irradiated with
750 W/m2 and it radiates to the sky at 170 K. The earth below
the plates is black at 10◦C. Find the equilibrium temperature
of each plate.

10.8 A sample holder of 99% pure aluminum, 1 cm in diameter and
16 cm in length, protrudes from a small housing on an or-
bital space vehicle. The holder “sees” almost nothing but outer
space at an effective temperature of 30 K. The base of the hold-
ers is 0◦C and you must find the temperature of the sample at
its tip. It will help if you note that aluminum is used, so that
the temperature of the tip stays quite close to that of the root.
[Tend = −0.7◦C.]

10.9 There is a radiant heater in the bottom of the box shown in
Fig. 10.26. What percentage of the heat goes out the top? What
fraction impinges on each of the four sides? (Remember that
the percentages must add up to 100.)

10.10 With reference to Fig. 10.13, find F1−2,4 and F2,4−1.

10.11 Find F2−4 for the surfaces shown in Fig. 10.27. [0.315.]
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Figure 10.26 Configuration for
Prob. 10.9.

Figure 10.27 Configuration for
Prob. 10.11.

Figure 10.28 Configuration for
Prob. 10.12.

10.12 What is F1−2 for the squares shown in Fig. 10.28?

10.13 A particular internal combustion engine has an exhaust mani-
fold at 600◦C running parallel to a water cooling line at 20◦C.
If both the manifold and the cooling line are 4 cm in diame-
ter, their centers are 7 cm apart, and both are approximately
black, how much heat will be transferred to the cooling line by
radiation? [383 W/m.]

10.14 Prove that F1−2 for any pair of two-dimensional plane surfaces,
as shown in Fig. 10.29, is equal to [(a + b) − (c + d)]/2L1.
This is called the string rule because we can imagine that the
numerator equals the difference between the lengths of a set
of crossed strings (a and b) and a set of uncrossed strings (c
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and d).

Figure 10.29 Configuration for
Prob. 10.14.

Figure 10.30 Configuration for
Prob. 10.15.

10.15 Find F1−5 for the surfaces shown in Fig. 10.30.

10.16 Find F1−2,3,4 for the surfaces shown in Fig. 10.31.

Figure 10.31 Configuration for
Prob. 10.16.
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10.17 A cubic box 1 m on the side is black except for one side, which
has an emittance of 0.2 and is kept at 300◦C. An adjacent side
is kept at 500◦C. The other sides are insulated. Find Qnet inside
the box. [2494 W.]

10.18 Rework Problem 10.17, but this time set the emittance of the
insulated walls equal to 0.6. Compare the insulated wall tem-
perature with the value you would get if the walls were black.

10.19 An insulated black cylinder, 10 cm in length and with an in-
side diameter of 5 cm, has a black cap on one end and a cap
with an emittance of 0.1 on the other. The black end is kept
at 100◦C and the reflecting end is kept at 0◦C. Find Qnet inside
the cylinder and Tcylinder.

10.20 Rework Example 10.3 if the shield has an inside emittance of
0.34 and the room is at 20◦C. How much cooling must be pro-
vided to keep the shield at 100◦C?

10.21 A 0.8 m long cylindrical burning chamber is 0.2 m in diameter.
The hot gases within it are at a temperature of 1500◦C and a
pressure of 1 atm, and the absorbing components consist of
12% by volume of CO2 and 18% H2O. Neglect end effects and
determine how much cooling must be provided the walls to
hold them at 750◦C if they are black.

10.22 A 30 ft by 40 ft house has a conventional 30◦ sloping roof with
a peak running in the 40 ft direction. Calculate the tempera-
ture of the roof in 20◦C still air when the sun is overhead (a) if
the roofing is of wooden shingles and (b) if it is commercial
aluminum sheet. The incident solar energy is 670W/m2, Kirch-
hoff’s law applies for both roofs, and Teff for the sky is 22◦C.

10.23 Calculate the radiant heat transfer from a 0.2 m diameter stain-
less steel hemisphere (εss = 0.4) to a copper floor (εCu = 0.15)
that forms its base. The hemisphere is kept at 300◦C and the
base at 100◦C. Use the algebraic method. [21.24 W.]

10.24 A hemispherical indentation in a smooth wrought-iron plate
has an 0.008 m radius. How much heat radiates from the 40◦C
dent to the −20◦C surroundings?
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10.25 A conical hole in a block of metal for which ε = 0.5 is 5 cm in
diameter at the surface and 5 cm deep. By what factor will the
radiation from the area of the hole be changed by the presence
of the hole? (This problem can be done to a close approxi-
mation using the methods in this chapter if the cone does not
become very deep and slender. If it does, then the fact that the
apex is receiving far less radiation makes it incorrect to use the
network analogy.)

10.26 A single-pane window in a large room is 4 ft wide and 6 ft high.
The room is kept at 70◦F, but the pane is at 67◦F owing to heat
loss to the colder outdoor air. Find (a) the heat transfer by radi-
ation to the window; (b) the heat transfer by natural convection
to the window; and (c) the fraction of heat transferred to the
window by radiation.

10.27 Suppose that the windowpane temperature is unknown in Prob-
lem 10.26. The outdoor air is at 40◦F and h is 62 W/m2·◦C on
the outside of the window. It is nighttime and the effective tem-
perature of the sky is 15◦F. Assume Fwindow−sky = 0.5. Take the
rest of the surroundings to be at 40◦F. Find Twindow and draw
the analogous electrical circuit, giving numerical values for all
thermal resistances. Discuss the circuit. (It will simplify your
calculation to note that the window is opaque to infrared radia-
tion but that it offers very little resistance to conduction. Thus,
the window temperature is almost uniform.)

10.28 A very effective low-temperature insulation is made by evacu-
ating the space between parallel metal sheets. Convection is
eliminated, conduction occurs only at spacers, and radiation
is responsible for what little heat transfer occurs. Calculate
q between 150 K and 100 K for three cases: (a) two sheets of
highly polished aluminum, (b) three sheets of highly polished
aluminum, and (c) three sheets of rolled sheet steel.

10.29 Three parallel black walls, 1 m wide, form an equilateral trian-
gle. One wall is held at 400 K, one is at 300 K, and the third is
insulated. Find Q W/m and the temperature of the third wall.

10.30 Two 1 cm diameter rods run parallel, with centers 4 cm apart.
One is at 1500 K and black. The other is unheated, and ε = 0.66.
They are both encircled by a cylindrical black radiation shield
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at 400 K. Evaluate Q W/m and the temperature of the unheated
rod.

10.31 A small-diameter heater is centered in a large cylindrical radi-
ation shield. Discuss the relative importance of the emittance
of the shield during specular and diffuse radiation.

10.32 Two 1 m wide commercial aluminum sheets are joined at a 120◦
angle along one edge. The back (or 240◦ angle) side is insulated.
The plates are both held at 120◦C. The 20◦C surroundings are
distant. What is the net radiant heat transfer from the left-hand
plate: to the right-hand side, and to the surroundings?

10.33 Two parallel discs of 0.5 m diameter are separated by an infinite
parallel plate, midway between them, with a 0.2 m diameter
hole in it. The discs are centered on the hole. What is the view
factor between the two discs if they are 0.6 m apart?

10.34 An evacuated spherical cavity, 0.3 m in diameter in a zero-
gravity environment, is kept at 300◦C. Saturated steam at 1 atm
is then placed in the cavity. (a) What is the initial flux of radiant
heat transfer to the steam? (b) Determine how long it will take
for qconduction to become less than qradiation. (Correct for the
rising steam temperature if it is necessary to do so.)

10.35 Verify cases (1), (2), and (3) in Table 10.2 using the string method
described in Problem 10.14.

10.36 Two long parallel heaters consist of 120◦ segments of 10 cm di-
ameter parallel cylinders whose centers are 20 cm apart. The
segments are those nearest each other, symmetrically placed
on the plane connecting their centers. Find F1−2 using the
string method described in Problem 10.14.)

10.37 Two long parallel strips of rolled sheet steel lie along sides of
an imaginary 1 m equilateral triangular cylinder. One piece is
1 m wide and kept at 20◦C. The other is 1

2 m wide, centered in an
adjacent leg, and kept at 400◦C. The surroundings are distant
and they are insulated. Find Q. (You will need a shape factor;
it can be found using the method described in Problem 10.14.)
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10.38 Find the shape factor from the hot to the cold strip in Prob-
lem 10.37 using Table 10.2, not the string method. If your in-
structor asks you to do so, complete Problem 10.37 when you
have F1−2.

10.39 Prove that, as the figure becomes very long, the view factor for
the second case in Table 10.3 reduces to that given for the third
case in Table 10.2.

10.40 Show that F1−2 for the first case in Table 10.3 reduces to the
expected result when plates 1 and 2 are extended to infinity.

10.41 In Problem 2.26 you were asked to neglect radiation in showing
that q was equal to 8227 W/m2 as the result of conduction
alone. Discuss the validity of the assumption quantitatively.

10.42 A 100◦C sphere with ε = 0.86 is centered within a second
sphere at 300◦C with ε = 0.47. The outer diameter is 0.3 m
and the inner diameter is 0.1 m. What is the radiant heat flux?
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11. An Introduction to Mass
Transfer

The edge of a colossal jungle, so dark-green as to be almost black, fringed
with white surf, ran straight, like a ruled line, far, far away along a blue
sea whose glitter was blurred by a creeping mist. The sun was fierce, the
land seemed to glisten and drip with steam.

Heart of Darkness, Joseph Conrad, 1902

11.1 Introduction

The preceding chapters of this book deal with heat transfer by convec-
tion and by the diffusion of heat, which we have been calling heat conduc-
tion. We have only discussed situations in which the medium transferring
heat is composed of a single substance—convective processes in which
pure fluids transfer heat by convection to adjacent solid walls, phase-
change processes in which pure vapors condense on cold surfaces, and
so on. Many heat transfer processes, however, involve mixtures of more
than one substance. A wall exposed to a hot air stream may be cooled
evaporatively by bleeding water through its surface. Water vapor may
condense out of damp air onto cool surfaces. Heat will flow through
an air-water mixture in these situations, but water vapor will diffuse or
convect through air as well.

This sort of transport of one substance relative to another is called
mass transfer ; it did not occur in the single-component processes of the
preceding chapters. In this chapter, we study mass transfer phenomena
with an eye toward predicting heat and mass transfer rates in situations
like those just mentioned.

During mass transfer processes, an individual chemical species trav-

547
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els from regions of high concentration of that species to regions of low
concentration. When liquid water is exposed to a dry air stream, its vapor
pressure may produce a comparatively high concentration of water vapor
in the air near the water surface. The concentration difference between
the water vapor near the surface and that in the air stream will drive the
diffusion of vapor into the air stream, causing evaporation.

In this and other respects, mass transfer is analogous to heat transfer.
In heat transfer, thermal energy diffuses from regions of high concentra-
tion (that is, of high temperature) to regions of low concentration (of
low temperature), following gradients in the concentration (temperature
gradients). In mass transfer, each species in a mixture diffuses along gra-
dients in its concentration. Just as the diffusional (or conductive) heat
flux is directly proportional to a temperature gradient, so the diffusional
mass flux of a species is often directly proportional to its concentration
gradient; this is called Fick’s law of diffusion. Just as conservation of
energy and Fourier’s law lead to equations for the convection and diffu-
sion of heat, conservation of mass and Fick’s law lead to equations for
the convection and diffusion of species in a mixture. The great similar-
ity of the equations of heat convection and diffusion to those of mass
convection and diffusion extends to the definition and use of convective
mass transfer coefficients, which, like heat transfer coefficients, relate
convective fluxes to concentration differences. Moreover, with simple
modifications, the heat transfer coefficients of previous chapters may
often be applied to mass transfer calculations.

Mass transfer, by its very nature, is intimately involved with mixtures
of chemical species. This chapter begins with a section defining vari-
ous measures of the concentration of species in a mixture and of the
velocities at which individual species move. We make frequent reference
to an arbitrary “species i,” the ith component of a mixture of N differ-
ent species. These definitions may remind you of your first course in
chemistry. We also spend some time, in Section 11.4, discussing how to
calculate transport properties of mixtures, such as diffusion coefficients
and viscosities.

The natural-draft cooling tower shown in Fig. 11.1 is a common ex-
ample of a mass transfer technology. These huge towers are used to cool
the circulating water leaving power plant condensers or other large heat
exchangers. They are essentially empty shells, at the bottom of which are
arrays of cement boards or plastic louvres over which is sprayed the hot
water to be cooled. The hot water runs over this packing, and a portion
of it evaporates into the cool air that enters from below. The remaining
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Figure 11.1 Schematic diagram of a cooling tower at the
Rancho Seco nuclear power plant. (From [11.1], courtesy of
W. C. Reynolds.)

water, having been cooled by evaporation, falls to the bottom, where it
is collected and recirculated.

The temperature of the air rises as it absorbs the warm vapor and, in
the natural-draft form of cooling tower, the upper portion of the tower
acts as an enormous chimney through which the warm, moist air buoys,
drawing cool air in from below. In amechanical-draft cooling tower, fans
are used to pull air through the packing.

The working mass transfer process in a cooling tower is the evapo-
ration of water into air. The rate of evaporation depends on the tem-
perature and humidity of the incoming air, the feed water temperature,
and the air-flow characteristics of the tower and the packing. When the
air flow is buoyancy-driven, the flow rates are directly coupled. Thus,
the complete design of a cooling tower is clearly a complex task. In this
chapter, we study only the key issue in such design—the issue of mass
transfer.
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11.2 Mixture compositions and species fluxes

The composition of mixtures

A mixture is made up of various proportions of its constituent chemi-
cal species, but it displays its own density, molecular weight, and other
overall thermodynamic properties. These properties depend on the types
and relative amounts of the component substances. Moreover, the pro-
portions of each substance vary from point to point in the nonuniform
mixtures that give rise to mass diffusion. To describe the composition of
a mixture, we must introduce measures of the local proportion of each
component and the resultant properties of the mixture.

A given volume element of a mixture contains a certain mass of each
of its components. Dividing that mass by the volume of the element, we
obtain the partial density, ρi, for each component i of the mixture, in kg
of i per m3. We may then describe the composition of the mixture by
stating the partial density of each of its components. The mass density
of the mixture itself, ρ, is the total mass in this element divided by the
volume of the element; therefore,

ρ =
∑
i
ρi (11.1)

The concentration of species i in the mixture may be described by the
ratio ρi/ρ, which is the mass of i per unit mass of the mixture. This ratio
is called the mass fraction, mi:

mi = ρi
ρ
= mass of species i

mass of mixture
(11.2)

It follows that ∑
i
mi =

∑
i
ρi/ρ = 1 and 0 Bmi B 1 (11.3)

The molar concentration of species i in kmol/m3, ci, expresses con-
centration in terms of moles rather than mass. If Mi is the molecular
weight of species i in kg/kmol, then

ci = ρi
Mi

= moles of i
volume

. (11.4)

The molar concentration of the mixture, c, is the total number of moles
for all species per unit volume; thus,

c =
∑
i
ci. (11.5)
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The mole fraction of species i, xi, is the number of moles of i per mole
of mixture:

xi = ci
c
= moles of i

mole of mixture
. (11.6)

Equations (11.5) and (11.6) lead to∑
i
xi = 1 and 0 B xi B 1 (11.7)

The molecular weight of the mixture, M ≡ ρ/c, may be written as

M =
∑
i
xiMi or

1
M
=

∑
i

mi
Mi

(11.8)

using eqns. (11.1,11.4, and 11.6) and (11.5,11.4, and 11.2), respectively.
From these expressions, one may develop the following relations (Prob-
lem 11.1):

mi = xiMi∑
xkMk

xi = mi/Mi∑
mk/Mk

(11.9)

In some circumstances, such as kinetic theory calculations, one works
directly with the number of molecules of i per unit volume. This number
density, Ni, is given by

Ni = NAci (11.10)

where NA is Avogadro’s number, 6.02214× 1026 molecules/kmol.

Ideal gases

The relations we have developed so far involve densities and concentra-
tions that vary in as yet unknown ways with temperature or pressure.
They must be combined with equation-of-state information before they
can be used in actual processes. To get a more useful, though more re-
strictive, set of results, we now combine the preceding relations with the
ideal gas law, as applied to each individual component:

pi = ρiRiT (11.11)

In eqn. (11.11), pi is thepartial pressure exerted by component i and Ri
is the ideal gas constant for that component:

Ri = R◦

Mi
(11.12a)

= NAkB

Mi
(11.12b)
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where R◦ is the universal gas constant, 8314.472 J/kmol· K, and Boltz-
mann’s constant, kB, is equal to R◦/NA. Equation (11.11) may then be
rewritten as

pi = ρiRiT = Mici
(
R◦

Mi

)
T (11.13a)

= ci R◦T (11.13b)

Equation (11.5) then becomes

c =
∑
i
ci =

∑
i

pi
R◦T

= p
R◦T

(11.14)

Multiplying the last part of eqn. (11.14) by R◦T yields Dalton’s law of
partial pressures,1

p =
∑
i
pi (11.15)

Finally, we combine eqns. (11.6), (11.13b), and (11.15) to obtain the
useful result:

xi = ci
c
= pi
c R◦T

= pi
p

(11.16)

in which the last two equalities are restricted to ideal gases.

Example 11.1

The most important mixture that we deal with is air. It has the fol-
lowing composition:

Species Mass Fraction

N2 0.7556
O2 0.2315
Ar 0.01289
trace gases < 0.01

1Dalton’s law (1801) is an empirical principle (not a deduced result) in classical ther-
modynamics. It can be deduced from molecular principles, however. We built the
appropriate molecular principles into our development when we assumed eqn. (11.11)
to be true. The reason that eqn. (11.11) is true is that ideal gas molecules occupy a
mixture without influencing one another.
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Determine xO2, pO2, cO2, and ρO2 for air at 1 atm.

Solution. Equation (11.8) and data from Table 11.1 on page 565
yield Mair as follows:

Mair =
(

0.7556
28.02 kg/kmol

+ 0.2315
32.00 kg/kmol

+ 0.01289
39.95 kg/kmol

)−1

= 28.97 kg/kmol

Using eqn. (11.9), we get

xO2 =
(0.2315)(28.97 kg/kmol)

32.00 kg/kmol
= 0.2095

The partial pressure of oxygen in air at 1 atm is [eqn. (11.16)]

pO2 = (0.2095)(101,325 Pa) = 2.123× 104 Pa

We obtain cO2 from eqn. (11.13b):

cO2 = (2.123× 104 Pa)
/
(300 K)(8314.5 J/kmol·K)

= 0.008510 kmol/m3

and eqn. (11.4) is then used to get the partial density

ρO2 = cO2MO2

= (0.008510 kmol/m3)(32.00 kg/kmol)

= 0.2723 kg/m3

Velocities and fluxes

Each species in a mixture undergoing a mass transfer process will have an
species-average velocity, �vi, which is generally different for each species
in the mixture, as suggested by Fig. 11.2. We may obtain the mass-
average velocity,2 �v , from the species average velocities using the for-
mula

ρ�v =
∑
i
ρi �vi. (11.17)

2The mass average velocity, �v , given by eqn. (11.17) is identical to the fluid velocity,
�u, used in previous chapters. This is apparent if one applies eqn. (11.17) to a “mix-
ture” composed of only one species. We use the symbol �v here because �v is the more
common notation in the mass transfer literature.
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Figure 11.2 Molecules of different
species in a mixture moving with
different average velocities. The velocity
�vi is the average over all molecules of
species i.

This equation is essentially a local calculation of the mixture’s net mo-
mentum per unit volume. We refer to ρ�v as the mixture’s mass flux, �n,
and we call its scalar magnitude ṁ′′; each has units of kg/m2·s. Likewise,
the mass flux of species i is

�ni = ρi�vi (11.18)

and, from eqn. (11.17), we see that the mixture’s mass flux equals the
sum of all species’ mass fluxes

�n =
∑
i
�ni (11.19)

Since each species diffusing through a mixture has some velocity rel-
ative to the mixture’s mass-average velocity, the diffusional mass flux, �ji,
of a species relative to the mixture’s mean flow may be identified:

�ji = ρi
(
�vi − �v

)
. (11.20)

The total mass flux of the ith species, �ni, includes both this diffusional
mass flux and bulk convection by the mean flow, as is easily shown:

�ni = ρi�vi = ρi�v + ρi
(
�vi − �v

)
= ρi�v + �ji

= mi�n︸ ︷︷ ︸
convection

+ �ji︸ ︷︷ ︸
diffusion

(11.21)
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Although the convective transport contribution is fully determined as
soon as we know the velocity field and partial densities, the causes of
diffusion need further discussion, which we defer to Section 11.3.

Combining eqns. (11.19) and (11.21), we find that

�n =
∑
i
�ni =

∑
i
ρi �v +

∑
i

�ji = ρ�v +
∑
i

�ji = �n+
∑
i

�ji

so ∑
i

�ji = 0 (11.22)

Diffusional mass fluxes must sum to zero because they are each defined
relative to the mean mass flux.

We also uses the mixture’s mole flux, �N , defined together with the
mole-average velocity, �v∗, as:

�N = c�v∗ =
∑
i
ci �vi. (11.23)

The mole flux of the ith species, �Ni, is ci �vi. Hence,∑
i

�Ni =
∑
i
ci �vi = c�v∗ = �N. (11.24)

The last flux we define is the diffusional mole flux, �Ji
∗

:

�J∗i = ci
(
�vi − �v∗

)
(11.25)

It may be shown, using these definitions, that

�Ni = xi �N + �J∗i (11.26)

Substitution of eqn. (11.26) into eqn. (11.24) gives

�N =
∑
i

�Ni = �N
∑
i
xi +

∑
i

�J∗i = �N +
∑
i

�J∗i

so ∑
i

�J∗i = 0. (11.27)

Thus, both the �J∗i ’s and the �ji’s add up to zero.
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Example 11.2

At low temperatures, carbon oxidizes (burns) in air through the sur-
face reaction: C+O2 �→ CO2. Figure 11.3 shows the carbon-air in-
terface in a coordinate system that moves into the stationary carbon
at the same speed that the carbon burns away—as though the ob-
server were seated on the moving interface. Oxygen flows toward
the carbon surface and carbon dioxide flows away, with a net flow
of carbon through the interface. If the system is at steady state and,
if a separate analysis shows that carbon is consumed at the rate of
0.00241 kg/m2·s, find the mass and mole fluxes through an imagi-
nary surface, s, that stays close to the gas side of the interface. For
this case, concentrations at the s-surface turn out to be mO2,s = 0.20,
mCO2,s = 0.052, and ρs = 0.29 kg/m3.

Solution. The mass balance for the reaction is

12.0 kg C+ 32.0 kg O2 �→ 44.0 kg CO2

Since carbon flows through a second imaginary surface, u, moving
through the stationary carbon just below the interface, the mass fluxes
are related by

nC,u = −12
32

nO2,s =
12
44

nCO2,s

The minus sign arises because the O2 flow is opposite the C and CO2

flows, as shown in Figure 11.3. In steady state, if we apply mass
conservation to the control volume between the u and s surfaces, we
find that the total mass flow entering theu-surface equals that leaving
the s-surface

nC,u = nCO2,s +nO2,s = ṁ′′

We call the total mass flow ṁ′′. Hence,

nO2,s = −32
12

(0.00241 kg/m2·s) = −0.00643 kg/m2·s

nCO2,s =
44
12

(0.00241 kg/m2·s) = 0.00884 kg/m2·s

To get the diffusional mass flux, we need species and mass average



§11.2 Mixture compositions and species fluxes 557

Figure 11.3 Low-temperature carbon
oxidation.

speeds:

vO2,s = nO2,s

ρO2,s
= −0.00643 kg/m2·s

0.2 (0.29 kg/m3)
= −0.111 m/s

vCO2,s =
nCO2,s

ρCO2,s
= 0.00884 kg/m2·s

0.052 (0.29 kg/m3)
= 0.586 m/s

vs = 1
ρs

∑
i
ni = (0.00884− 0.00643) kg/m2·s

0.29 kg/m3
= 0.00831 m/s

Thus,

ji,s = ρi,s
(
vi,s − vs

) =

−0.00691 kg/m2·s for O2

0.00876 kg/m2·s for CO2

The diffusional mass fluxes, ji,s , are very nearly equal to the species
mass fluxes, ni,s . That is because the mass-average speed, vs , is here
so much less than the species speeds, vi,s , that the convective contri-
bution to ni,s is much smaller than the diffusive contribution. Thus,
mass transfer occurs primarily by diffusion. Note that jO2,s and jCO2,s
do not sum to zero because the other, nonreacting species in air must
diffuse against the small convective velocity, vs (see Section 11.6).

One mole of carbon surface reacts with one mole of O2 to form
one mole of CO2. Thus, the mole fluxes of each species have the same
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magnitude at the interface:

NCO2,s = −NO2,s = NC,u = nC,u

MC
= 0.000112 kmol/m2·s

and the mole average velocity at the s-surface is identically zero (since
NCO2,s +NO2,s = 0). The diffusional mole fluxes are

J∗i,s = ci,s
(
vi,s − v∗s︸︷︷︸

=0

) = ρi,s
mi

vi,s =

−0.000201 kmol/m2·s for O2

0.000201 kmol/m2·s for CO2

These diffusional mole fluxes do sum to zero because there is no
convective mole flux for other species to diffuse against.

The reader may calculate the velocity of the interface from nc,u.
That calculation would show the interface to be receding so slowly
that the velocities calculated here are almost equal to those that would
be seen by a stationary observer.

11.3 Diffusion fluxes and Fick’s Law

When the composition of a mixture is spatially nonuniform, concentra-
tion gradients exist in the various species of the mixture. These gradi-
ents provide a driving potential for the diffusion of a given species, i,
from regions of high concentration of i to regions of low concentration
of i—similar to the diffusion of heat from regions of high temperature
to regions of low temperature. We have already noted in Section 2.1 that
mass diffusion obeys Fick’s law

�ji = −ρDim∇mi (11.28)

which is analogous to Fourier’s law.
The constant of proportionality, ρDim, between the local diffusive

mass flux of species i and the local gradient of the concentration of i in-
volves a physical property called the diffusion coefficient,Dim, for species
i diffusing in the mixture m. Like the thermal diffusivity, α, or the kine-
matic viscosity (momentum diffusivity), ν , the mass diffusivity Dim has
the units of m2/s. These three diffusivities can form three dimensionless
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groups, among which is the Prandtl number:

The Prandtl number, Pr ≡ ν/α

The Schmidt number,3 Sc ≡ ν/Dim (11.29)

The Lewis number,4 Le ≡ α/Dim = Sc/Pr

Each of these groups compares the relative strength of two different dif-
fusive processes. We make considerable use of the Schmidt number in
this chapter.

When diffusion occurs in mixtures of only two species, so-called bi-
nary mixtures, Dim reduces to the binary diffusion coefficient, D12. In
fact, the best-known kinetic models are for binary diffusion.5 In binary
diffusion, species 1 has the same diffusivity through species 2 as does
species 2 through species 1 (see Problem 11.5); in other words,

D12 = D21 (11.30)

A Kinetic Model of Diffusion

Diffusion coefficients depend upon composition, temperature, and pres-
sure. We take up the calculation of D12 and Dim in detail in the next
section. First, let us see how Fick’s law can be obtained from the same
sort of elementary molecular kinetics that gave Fourier’s and Newton’s
laws in Section 6.4.

We consider a two-component dilute gas (one with a low density) in
which the molecules A of one species are very similar to the molecules A′

3Ernst Schmidt (1892–1975) served successively as the professor of thermodynam-
ics at the Technical Universities of Danzig, Braunschweig, and Munich (Chapter 6, foot-
note 3). His many contributions to heat and mass transfer include the introduction of
aluminum foil as radiation shielding, the first measurements of velocity and temper-
ature fields in a natural convection boundary layer, and a once widely-used graphical
procedure for solving unsteady heat conduction problems. He was among the first to
develop the analogy between heat and mass transfer.

4Warren K. Lewis (1882–1975) was a professor of chemical engineering at M.I.T. from
1910 to 1975 and headed the department throughout the 1920s. He defined the original
paradigm of chemical engineering, that of “unit operations”, and, through his textbook
with Walker and McAdams, Principles of Chemical Engineering, he laid the foundations
of the discipline. He was a prolific inventor in the area of industrial chemistry, holding
more than 80 patents. He also did important early work on simultaneous heat and
mass transfer in connection with evaporation problems.

5Actually, Fick’s Law is strictly valid only for binary mixtures. It can, however, often
be applied to multicomponent mixtures by an appropriate choice of Dim. This issue
is discussed in Section 11.4.
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Figure 11.4 One-dimensional diffusion.

of a second species (as though some of the molecules of a pure gas had
merely been labeled without changing their properties.) The resulting
process is called self-diffusion.

If we have a one-dimensional concentration distribution, as shown in
Fig. 11.4, molecules of A diffuse down their concentration gradient in
the x-direction. This process is entirely analogous to the transport of
energy and momentum shown in Fig. 6.13. We take the temperature and
pressure of the mixture (and thus its number density) to be uniform and
the mass-average velocity to be zero.

Individual molecules have thermal motion at a speed C , which varies
randomly from molecule to molecule and is called the thermal or peculiar
speed. The average speed of the molecules isC . The average rate at which
molecules cross the plane x = x0 in either direction is proportional to
NC . Prior to crossing the x0-plane, the molecules travel a distance close
to one mean free path, Q—call it aQ, where a is a number on the order of
unity.

The molecular flux travelling rightward across x0, from its plane of
origin at x0−aQ, then has a composition equal to the value of NA/N at
x0 − aQ, and the situation is similar for the leftward flux from x0 + aQ.
The magnitude of the net mass flux in the x-direction is then

jA
∣∣∣
x0
= η

(
NC

)(
MA

NA

)(
NA

N
∣∣∣∣
x0−aQ

− NA

N
∣∣∣∣
x0+aQ

)
(11.31)
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where η is a constant of proportionality. Since NA/N changes little in a
distance of two mean free paths (in most real situations), we can expand
the right side of eqn. (11.31) in a two-term Taylor series expansion about
x0 and obtain Fick’s law:

jA
∣∣∣
x0
= −2ηa

(
NCQ

)(
MA

NA

)
d(NA/N )

dx

∣∣∣∣
x0

= −2ηa(CQ)ρ
dmA

dx

∣∣∣∣
x0

(11.32)

(see also Problem 11.6.) Thus, we identify

DAA′ = (2ηa)CQ (11.33)

and Fick’s law takes the form

jA = −ρDAA′
dmA

dx
(11.34)

The constant, ηa, in eqn. (11.33) can be fixed only with the help of a more
detailed kinetic theory calculation [11.2], the result of which is given in
Section 11.4.

Other Aspects of Diffusion

Fick’s law has been verified experimentally low density gases and in di-
lute liquid solutions, but for liquids the diffusion coefficient is found to
depend significantly on the concentration of the diffusing species. In
part, the concentration dependence of liquid diffusion coefficients re-
flects the inadequacy of the concentration gradient in representing the
driving force for diffusion in nondilute solutions. Gradients in the chem-
ical potential actually drive diffusion. In concentrated liquid solutions,
those gradients are not equivalent to concentration gradients [11.3, 11.4].

The choice of ji andmi for the description of diffusion is really some-
what arbitrary. The molar diffusion flux, J∗i , and the mole fraction, xi,
are often used instead, in which case Fick’s law reads

�Ji
∗ = −cDim∇xi (11.35)

Obtaining eqn. (11.35) from eqn. (11.28) for a binary mixture is left as an
exercise (Problem 11.4).
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Mass diffusion need not always arise from concentration gradients,
although they are of primary importance. For example, temperature gra-
dients can induce mass diffusion in a process known as thermal diffusion
or the Soret effect. The diffusional mass flux resulting from both temper-
ature and concentration gradients in a binary mixture is then [11.2]

�ji = −ρD12

[
∇m1 + M1M2

M2
kT∇ ln(T)

]
(11.36)

where kT is called the thermal diffusion ratio and is generally quite small.
Thermal diffusion is occasionally used in chemical separation processes.
Pressure gradients and body forces acting unequally on the different
species can also cause diffusion; again, these effects are normally small.
A related phenomenon is the generation of a heat flux by concentration
gradients (as distinct from heat convected by diffusing mass), called the
diffusion-thermo or Dufour effect.

In this chapter, we deal only with mass transfer produced by concen-
tration gradients.

11.4 Transport properties of mixtures

The diffusion coefficient is clearly the key transport property in a mass
transfer problem. The analysis of mass transfer, however, is seldom done
in isolation from the analysis of concurrent fluid-flow and heat transfer
processes. Since mass transfer always involves mixtures, we must there-
fore be able to obtain not only a mixture’s diffusion coefficient, but also
its viscosity and thermal conductivity. These three transport properties
generally depend upon the mixture’s local temperature and pressure and
its local composition.

Direct experimental measurements of the transport properties are
preferable to predicted values, but such data are often unavailable. Thus,
we usually use theoretical predictions or experimental correlations to
calculate mixture properties. Effective theories exist for the transport
properties of dilute gases, but the theoretical framework for calculat-
ing liquid properties is weaker. In this section, we discuss methods for
computing Dim, k, and ν in gas mixtures using equations from kinetic
theory—particularly the Chapman-Enskog theory (treated in greater de-
tail in [11.2], [11.3], and [11.5]). We also consider some methods for
computing D12 in dilute liquid solutions.
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The diffusion coefficient for binary gas mixtures

As a starting point, we return to the self-diffusion coefficient obtained
from the simple model of a dilute gas, eqn. (11.33). This result involves
an average molecular speed, which can be approximated by Maxwell’s
equilibrium formula (see, e.g., [11.5]):

C =
(

8kBNAT
πM

)1/2

(11.37)

If we also assume rigid spherical molecules, then the mean free path
takes the form

Q = 1

π
√

2Nd2
= kBT
π
√

2d2p
(11.38)

where d is the effective molecular diameter. Substituting these values
of C and Q in eqn. (11.33) and applying a kinetic theory calculation that
shows 2ηa = 1/2, we find

DAA′ = (2ηa)CQ

= (kB/π)3/2

d2

(
NA

M

)1/2 T 3/2

p
(11.39)

The diffusion coefficient varies as p−1 and T 3/2, based on the simple
model for self-diffusion.

Actual molecules are not hard spheres, nor do molecules of all species
have the same size. Moreover, the mixture itself may not be of uniform
temperature and pressure. The Chapman-Enskog kinetic theory, taking
all these factors into account [11.3], gives the following result for non-
polar molecules:

DAB = (1.8583× 10−7)T 3/2

pΩAB
D (T)

√
1
MA

+ 1
MB

where the units of p, T , and DAB are atm, K, and m2/s, respectively. The
function ΩAB

D (T) describes the collisions between molecules of A and B.
It depends, in general, on the specific type of molecules involved and the
temperature.

The type of molecule matters because of the intermolecular forces
of attraction and repulsion that arise when molecules collide. A good
approximation to those forces is given by the Lennard-Jones intermolec-
ular potential (see Fig. 11.5.) This potential is based on two parameters, a
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Figure 11.5 The Lennard-Jones
potential.

molecular diameter, σ , and the potential well depth, ε. The potential well
depth is the energy required to separate two molecules from one another.
Both constants can be inferred from physical property data. Some values
are given in Table 11.1 together with the associated molecular weights
(from [11.6], with values for calculating the diffusion coefficients of water
from [11.7]).

An accurate approximation toΩAB
D (T) can be obtained using the Lennard-

Jones potential function. The result is

ΩAB
D (T) = σ2

AB ΩD(kbT/εAB)

where, the collision cross section, σAB , may be viewed as an effective
molecular diameter for collisions of A and B. If σA and σB are the cross-
sectional diameters of A and B, in Å, then

σAB = (σA + σB)
/
2 (11.40)

The collision integral, ΩD is a result of kinetic theory calculations calcu-
lations based on the Lennard-Jones potential. Table 11.2 gives values of
ΩD from [11.8]. The effective potential well depth for collisions of A and
B is

εAB = √εAεB (11.41)
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Table 11.1 Lennard-Jones constants and molecular weights of
selected species

Species σ(Å) ε/kB(K) M
(

kg
kmol

)
Species σ(Å) ε/kB(K) M

(
kg

kmol

)

Al 2.655 2750 26.98 H2 2.827 59.7 2.016
Air 3.711 78.6 28.96 H2O 2.655a 363a 18.02
Ar 3.542 93.3 39.95 H2O 2.641b 809.1b

Br2 4.296 507.9 159.8 H2O2 4.196 289.3 34.01
C 3.385 30.6 12.01 H2S 3.623 301.1 34.08
CCl2F2 5.25 253 120.9 He 2.551 10.22 4.003
CCl4 5.947 322.7 153.8 Hg 2.969 750 200.6
CH3OH 3.626 481.8 32.04 I2 5.160 474.2 253.8
CH4 3.758 148.6 16.04 Kr 3.655 178.9 83.80
CN 3.856 75.0 26.02 Mg 2.926 1614 24.31
CO 3.690 91.7 28.01 NH3 2.900 558.3 17.03
CO2 3.941 195.2 44.01 N2 3.798 71.4 28.01
C2H6 4.443 215.7 30.07 N2O 3.828 232.4 44.01
C2H5OH 4.530 362.6 46.07 Ne 2.820 32.8 20.18
CH3COCH3 4.600 560.2 58.08 O2 3.467 106.7 32.00
C6H6 5.349 412.3 78.11 SO2 4.112 335.4 64.06
Cl2 4.217 316.0 70.91 Xe 4.047 231.0 131.3
F2 3.357 112.6 38.00

a Based on mass diffusion data.
b Based on viscosity and thermal conductivity data.

Hence, we may calculate the binary diffusion coefficient from

DAB = (1.8583× 10−7)T 3/2

pσ2
ABΩD

√
1
MA

+ 1
MB

(11.42)

where, again, the units of p, T , and DAB are atm, K, and m2/s, respec-
tively, and σAB is in Å.

Equation (11.42) indicates that the diffusivity varies as p−1 and is
independent of mixture composition, just as the simple model indicated
that it should. The temperature dependence of ΩD, however, increases
the overall temperature dependence of DAB from T 3/2, as suggested by
eqn. (11.39), to approximately T 7/4.



Table 11.2 Collision integrals for diffusivity, viscosity, and
thermal conductivity based on the Lennard-Jones potential

kBT/ε ΩD Ωµ = Ωk kBT/ε ΩD Ωµ = Ωk

0.30 2.662 2.785 2.70 0.9770 1.069
0.35 2.476 2.628 2.80 0.9672 1.058
0.40 2.318 2.492 2.90 0.9576 1.048
0.45 2.184 2.368 3.00 0.9490 1.039
0.50 2.066 2.257 3.10 0.9406 1.030
0.55 1.966 2.156 3.20 0.9328 1.022
0.60 1.877 2.065 3.30 0.9256 1.014
0.65 1.798 1.982 3.40 0.9186 1.007
0.70 1.729 1.908 3.50 0.9120 0.9999
0.75 1.667 1.841 3.60 0.9058 0.9932
0.80 1.612 1.780 3.70 0.8998 0.9870
0.85 1.562 1.725 3.80 0.8942 0.9811
0.90 1.517 1.675 3.90 0.8888 0.9755
0.95 1.476 1.629 4.00 0.8836 0.9700
1.00 1.439 1.587 4.10 0.8788 0.9649
1.05 1.406 1.549 4.20 0.8740 0.9600
1.10 1.375 1.514 4.30 0.8694 0.9553
1.15 1.346 1.482 4.40 0.8652 0.9507
1.20 1.320 1.452 4.50 0.8610 0.9464
1.25 1.296 1.424 4.60 0.8568 0.9422
1.30 1.273 1.399 4.70 0.8530 0.9382
1.35 1.253 1.375 4.80 0.8492 0.9343
1.40 1.233 1.353 4.90 0.8456 0.9305
1.45 1.215 1.333 5.00 0.8422 0.9269
1.50 1.198 1.314 6.00 0.8124 0.8963
1.55 1.182 1.296 7.0 0.7896 0.8727
1.60 1.167 1.279 8.0 0.7712 0.8538
1.65 1.153 1.264 9.0 0.7556 0.8379
1.70 1.140 1.248 10.0 0.7424 0.8242
1.75 1.128 1.234 20.0 0.6640 0.7432
1.80 1.116 1.221 30.0 0.6232 0.7005
1.85 1.105 1.209 40.0 0.5960 0.6718
1.90 1.094 1.197 50.0 0.5756 0.6504
1.95 1.084 1.186 60.0 0.5596 0.6335
2.00 1.075 1.175 70.0 0.5464 0.6194
2.10 1.057 1.156 80.0 0.5352 0.6076
2.20 1.041 1.138 90.0 0.5256 0.5973
2.30 1.026 1.122 100.0 0.5170 0.5882
2.40 1.012 1.107 200.0 0.4644 0.5320
2.50 0.9996 1.093 300.0 0.4360 0.5016
2.60 0.9878 1.081 400.0 0.4172 0.4811

566
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Air, by the way, can be treated as a single substance in Table 11.1
owing to the similarity of its two main constituents, N2 and O2.

Example 11.3

Compute DAB for the diffusion of hydrogen in air at 0◦C and 1 atm.

Solution. Let air be species A and H2 be species B. Then we read
from Table 11.1

σA = 3.711 Å, σB = 2.827 Å,
εA
kB
= 79 K,

εB
kB
= 60 K

and calculate these values

σAB = (3.711+ 2.827)/2 = 3.269 Å

εAB
/
kB =

√
79(60) = 68.9 K

Hence, kBT/εAB = 3.967, and ΩD = 0.8853 from Table 11.2. Then

DAB = (1.8583× 10−7)(273.15)3/2

(1)(3.269)2(0.8853)

√
1

2.016
+ 1

28.97
m2/s

= 6.46× 10−5 m2/s

An experimental value [11.9] is 6.34×10−5 m2/s, so the prediction is
high by only 2%.

Limitations of the diffusion coefficient prediction. Equation (11.42) is
not valid for all gas mixtures. We have already noted that concentration
gradients cannot be too steep; thus, it cannot be applied in, say, the inte-
rior of a shock wave when the Mach number is significantly greater than
unity. Furthermore, the gas must be dilute, and its molecules should be,
in theory, nonpolar, approximately spherically symmetric, and monatomic.

Figure 11.6 compares values ofD12 calculated using eqn. (11.42) with
data from [11.10]. It includes data for binary mixtures of monatomic,
polyatomic, nonpolar, and polar gases of the sort appearing in Table 11.1.
In most cases, eqn. (11.42) represents the data within about 7 percent.
Better results can be obtained by using values of σAB and εAB that have
been fit specifically to the pair of gases involved [11.11, Chap. 11], rather
than using eqns. (11.40) and (11.41), or by constructing a mixture-specific
equation for ΩAB

D (T).
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Figure 11.6 Kinetic theory prediction of diffusion coefficients
compared with experimental data from [11.10].

A gas is called dilute if its molecules interact with one another only
during brief collisions and if collisions of more than two molecules are so
infrequent that they can be ignored. Such gases are of course those hav-
ing a low density. Childs and Hanley [11.12] suggested that the transport
properties of gases are within 1% of the dilute values if the gas densities
do not exceed the following limiting value

ρmax = 22.93M
/
σ3Ωµ (11.43)

Here, σ (the collision cross section of the gas) and ρ are expressed in
Å and kg/m3, and Ωµ—a second collision integral for viscosity—is in-
cluded in Table 11.2. Equation (11.43) normally gives ρmax values that
correspond to pressures substantially above 1 atm.

At higher densities, the transport properties can be estimated by a
variety of techniques, such as corresponding states theories, absolute
reaction-rate theories, or modified Enskog theories [11.11, Chap. 6] (also
see [11.3, 11.10, 11.13]). Conversely, if the gas density is so very low that
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the a mean free path is on the order of the dimensions of the system, we
have what is called free molecule flow and the present kinetic models are
invalid (see, e.g., [11.14]).

Diffusion coefficients for multicomponent gases

Thus far, we have indicated that the effective binary diffusivity,Dim, can
be used to represent the diffusion of species i into a mixture m. The
preceding analyses, however, are strictly applicable only to the predic-
tion of the diffusion of one pure substance through another. Different
equations are needed when there are three or more species present.

If a low concentration of species i diffuses into a homogeneous mix-

ture of n species, then �Jj
∗ � 0 for j ≠ i, and one may show (Prob-

lem 11.14) that

D−1
im =

n∑
j=1
j≠i

xj
Dij

(11.44)

where Dij is the binary diffusion coefficient for species i and j alone.
This rule is sometimes called Blanc’s law [11.10].

If a mixture includes several trace gases and one dominant species,
A, then the diffusion coefficients of the trace species are approximately
the same as they would be if the other traces were not present. In other
words, for any particular trace species i,

Dim � DiA (11.45)

Finally, if the binary diffusion coefficient has the same value for each
pair of species in a mixture, then one may show (Problem 11.14) that
Dim = Dij .

Diffusion coefficients for binary liquid mixtures

Each molecule in a liquid is always in contact with several neighboring
molecules, and a kinetic theory like that used in gases, which relies on
detailed descriptions of two-molecule collisions, is no longer feasible.
Most of the available predictions of liquid phase diffusion coefficients
involve correlations of experimental measurements within a semitheo-
retical framework.
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For a dilute solution of substance A in liquid B, the so-called hydro-
dynamic model has met some success. It begins with the result

DAB = kBT (vA/FA) (11.46)

where vA is the steady average velocity of molecules of A relative to the
liquid B, and FA is the force acting on a molecule of A. Equation (11.46)
represents diffusion caused by random molecular motions, so-called Brow-
nian motion. It can be derived from kinetic and thermodynamic argu-
ments such as those given by Einstein [11.15] and Sutherland [11.16] and
is usually called the Nernst-Einstein equation. The ratio vA/FA is called
the mobility of A.

To evaluate the mobility of a molecular (or a particulate) solute, we
may apply Stokes’ law [11.17], which gives the drag on a sphere at low
Reynolds numbers (ReD < 1) as

FA = 6πµBvARA

(
1+ 2µB/βRA
1+ 3µB/βRA

)
(11.47)

Here, RA is the radius of sphere A and β is a coefficient of “sliding”
friction, for a friction force proportional to the velocity. Substituting
eqn. (11.47) in eqn. (11.46), we get

DABµB
T

= kB

6πRA

(
1+ 3µB/βRA
1+ 2µB/βRA

)
(11.48)

This model is valid if the concentration of solute A is so low that the
molecules of A do not interact with one another.

For viscous liquids one usually assumes that no slip occurs between
the liquid and a solid surface that it touches; but, for particles whose
size is on the order of the molecular spacing of the solvent molecules,
some slip may well occur. This is the reason for the unfamiliar factor in
parentheses on the right side of eqn. (11.47). For large solute particles,
no slip should occur, so β �→ ∞ and the factor in parentheses tends to
one, as expected. Equation (11.48) then reduces to6

DABµB
T

= kB

6πRA
(11.49a)

6Equation (11.49a) was first presented by Einstein in May 1905. The more general
form, eqn. (11.48), was presented independently by Sutherland in June 1905. Equa-
tions (11.48) and (11.49a) are commonly called the Stokes-Einstein equation, although
Stokes had no hand in applying eqn. (11.47) to diffusion. It might therefore be argued
that eqn. (11.48) should be called the Sutherland-Einstein equation.
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For smaller molecules—close in size to those of the solvent—we expect
that β �→ 0, leading to [11.18]

DABµB
T

= kB

4πRA
(11.49b)

The most important feature of eqns. (11.48), (11.49a), and (11.49b)
is that so long as the solute is dilute, the primary determinant of the
group Dµ/T is the size of the diffusing species, with a secondary depen-
dence on intermolecular forces (e.g., on β.) More complex theories, such
as the absolute reaction-rate theory of Eyring [11.19], lead to the same
dependence. Moreover, experimental studies of dilute solutions verify
that the group Dµ/T is essentially temperature-independent for a given
solute-solvent pair, wiht the only exception occuring in very high viscos-
ity solutions. Thus, most correlations of experimental data have used
some form of eqn. (11.48) as a starting point.

Many such correlations have been developed. One fairly successful
correlation is due to King, Hsueh, and Mao [11.20]. They expressed the
molecular size in terms of molal volumes at the normal boiling point,
Vm,A andVm,B , and accounted for intermolecular association forces using
the latent heats of vaporization at the normal boiling point, hfg,A and
hfg,B . They obtained

DABµB
T

= (4.4× 10−15)
(
Vm,B

Vm,A

)1/6 (
hfg,B
hfg,A

)1/2

(11.50)

which is accurate within an rms error of 19.5% and where the units of
DABµB/T are kg·m/ K·s2. Values of hfg and Vm are given for various
substances in Table 11.3. Equation (11.50) is valid for nonelectrolytes
at high dilution, and it appears to be satisfactory for both polar and
nonpolar substances. The difficulties the authors encountered with po-
lar solvents of high viscosity led them to limit eqn. (11.50) to values of
Dµ/T < 1.5×10−14 kg·m/ K·s2. The predictions of eqn. (11.50) are com-
pared with experimental data from [11.10] in Fig. 11.7. Reid, Prausnitz,
and Poling [11.10] review several other liquid-phase correlations and pro-
vide an assessment of their accuracies.

The thermal conductivity and viscosity of dilute gases

In any convective mass transfer problem, we must know the viscosity of
the fluid and, if heat is also being transferred, we must also know its
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Table 11.3 Molal specific volumes and latent heats of vapor-
ization for selected substances at their normal boiling points

Substance Vm (m3/kmol) hfg(MJ/kmol)

Methanol 0.042 35.53
Ethanol 0.064 39.33
n-Propanol 0.081 41.97
Isopropanol 0.072 40.71
n-Butanol 0.103 43.76
tert -Butanol 0.103 40.63
n-Pentane 0.118 25.61
Cyclopentane 0.100 27.32
Isopentane 0.118 24.73
Neopentane 0.118 22.72
n-Hexane 0.141 28.85
Cyclohexane 0.117 33.03
n-Heptane 0.163 31.69
n-Octane 0.185 34.14
n-Nonane 0.207 36.53
n-Decane 0.229 39.33
Carbon tetrachloride 0.102 29.93
Nitromethane 0.056 25.44
Ethyl bromide 0.075 27.41
Acetone 0.074 28.90
Benzene 0.096 30.76
Water 0.0187 40.62

thermal conductivity. Accordingly, we now consider the calculation of µ
and k for mixtures of gases.

Two of the most important results of the kinetic theory of gases are
the predictions of µ and k for a pure, monatomic gas of species A:

µA =
(

2.6693× 10−6
) √

MAT
σ2
AΩµ

(11.51)

and

kA = 0.083228

σ2
AΩk

√
T/MA (11.52)
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Figure 11.7 Comparison of liquid diffusion coefficients pre-
dicted by eqn. (11.50) with experimental values for assorted
substances from [11.10].

where Ωµ and Ωk are collision integrals for the viscosity and thermal
conductivity. In fact, Ωµ and Ωk are equal to one another, but they are
different from ΩD. In these equations µ is in kg/m·s, k is in W/m·K, T is
in kelvin, and σA, has units of Å.

The equation for µA applies equally well to polyatomic gases, but
kA must be corrected to account for internal modes of energy storage—
chiefly molecular rotation and vibration. Eucken (see, e.g., [11.5]) gave a
simple analysis showing that this correction was

k =
(

9γ − 5
4γ

)
µcp (11.53)

for an ideal gas, where γ ≡ cp/cv . You may recall from your thermo-
dynamics courses that γ is 5/3 for monatomic gases, 7/5 for diatomic
gases at modest temperatures, and approaches unity for very complex
molecules. Equation (11.53) should be used with tabulated data for cp;
on average, it will underpredict k by perhaps 10 to 20% [11.10].
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An approximate formula for µ for multicomponent gas mixtures was
developed by Wilke [11.21], based on the kinetic theory of gases. He in-
troduced certain simplifying assumptions and obtained, for the mixture
viscosity,

µm =
n∑
i=1

xiµi
n∑
j=1

xjφij

(11.54)

where

φij =
[

1+ (µi/µj)1/2(Mj/Mi)1/4
]2

2
√

2
[

1+ (Mi/Mj)
]1/2

The analogous equation for the thermal conductivity of mixtures was
developed by Mason and Saxena [11.22]:

km =
n∑
i=1

xiki
n∑
j=1

xjφij

(11.55)

(We have followed [11.10] in omitting a minor empirical correction factor
proposed by Mason and Saxena.)

Equation (11.54) is accurate to about 2 % and eqn. (11.55) to about 4%
for mixtures of nonpolar gases. For higher accuracy or for mixtures with
polar components, refer to [11.10, 11.11].

Example 11.4

Compute the transport properties of normal air at 300 K.

Solution. The mass composition of air was given in Example 11.1.
Using the methods of Example 11.1, we obtain the mole fractions as
xN2 = 0.7808, xO2 = 0.2095, and xAr = 0.0093.

We first compute µ and k for the three species to illustrate the use
of eqns. (11.51) to (11.53), although we could simply use tabled data
in eqns. (11.54) and (11.55). From Tables 11.1 and 11.2, we obtain
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Species σ(Å) ε/kB(K) M Ωµ

N2 3.798 71 28.02 0.9588
O2 3.467 107 32.00 1.058
Ar 3.542 93 39.95 1.020

Substitution of these values into eqn. (11.51) yields

Species µcalc.(kg/m·s) µexpt(kg/m·s)
N2 1.770× 10−5 1.784× 10−5

O2 2.057× 10−5 2.063× 10−5

Ar 2.284× 10−5 2.29 × 10−5

where we show experimental values from Appendix A for comparison.
We then read cp from Appendix A and use eqn. (11.52) and (11.53) to
get the thermal conductivities of the components:

Species cp(J/kg·K) kcalc(W/m·K) kexpt(W/m·K)
N2 1040.8 0.02500 0.0259
O2 920.3 0.02569 0.02676
Ar 521.6 0.01782 0.01766

The predictions are thus accurate within about 1% for µ and within
about 4% for k.

To compute µm and km, we use eqns. (11.54) and (11.55) and
the experimental values of µ and k. Identifying N2, O2, and Ar as
species 1, 2, and 3, we get

φ12 = 0.9931, φ21 = 1.006

φ13 = 1.046, φ31 = 0.9418

φ23 = 1.057, φ32 = 0.9401

and φii = 1. The sums appearing in the denominators are

∑
xjφij =




0.9986 for i = 1

1.005 for i = 2

0.9416 for i = 3
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When they are substituted in eqns. (11.54) and (11.55), these values
give

µm,calc = 1.848× 10−5 kg/m·s, µm,expt = 1.853× 10−5 kg/m·s
km,calc = 0.02600 W/m·K, km,expt = 0.02614 W/m·K

so the mixture values are also predicted within 3 and 5%, respectively.

Finally, we need cpm to compute the Prandtl number of the mix-
ture. This is merely the mass weighted average of cp, or

∑
i micpi ,

and it is equal to 1006 J/kg·K. Then

Pr = (µcp/k)m = (1.848× 10−5)(1006)/0.02600 = 0.715.

This is only 0.3% above the tabled value of 0.713. The reader may wish
to compare these values with those obtained directly using the values
for air in Table 11.1 or to explore the effects of neglecting argon in
the preceding calculations.

11.5 The equation of species conservation

Conservation of species

Just as we formed an equation of energy conservation in Chapter 6, we
now form an equation of species conservation that applies to each sub-
stance in a mixture. In addition to accounting for the convection and
diffusion of each species, we must allow the possibility that a particu-
lar species is created or destroyed by chemical reactions occuring in the
bulk medium (so-called homogeneous reactions). Reactions on surfaces
surrounding the medium (heterogeneous reactions) would be accounted
for using boundary conditions.

We consider, in the usual way, an arbitrary control volume, R, with a
boundary, S, as shown in Fig. 11.8. The control volume is fixed in space,
with fluid moving through it. Species imay accumulate in R, it may travel
in and out of R by bulk convection or by diffusion, and it may be created
within R by homogeneous reactions. The rate of creation of species i is
denoted as ṙi(kg/m3·s); since chemical reactions conserve mass, the net
mass creation is ṙ =∑

ṙi = 0. The rate of change of species i in R is then



§11.5 The equation of species conservation 577

Figure 11.8 Control volume in a
fluid-flow and mass-diffusion field.

described by the following balance:

d
dt

∫
R
ρi dR︸ ︷︷ ︸

rate of increase
of i in R

= −
∫
S
�ni · d�S +

∫
R
ṙi dR

= −
∫
S
ρi �v · d�S︸ ︷︷ ︸

rate of convection
of i out of R

−
∫
S
�ji · d�S︸ ︷︷ ︸

diffusion of i
out of R

+
∫
R
ṙi dR︸ ︷︷ ︸

rate of creation
of i in R

(11.56)

This species conservation statement is identical to our energy conserva-
tion statement, eqn. (6.36) on page 279, except that mass of species i has
taken the place of energy and heat.

We may convert the surface integrals to volume integrals using Gauss’s
theorem [eqn. (2.8)] and rearrange the result to find:∫

R

[
∂ρi
∂t

+∇ · (ρi �v)+∇ · �ji − ṙi
]
dR = 0 (11.57)

Since the control volume is selected arbitrarily, the integrand must be
identically zero. Thus, we obtain the general form of the species conser-
vation equation:

∂ρi
∂t

+∇ · (ρi �v) = −∇ · �ji + ṙi (11.58)
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We may obtain a mass conservation equation for the entire mixture by
summing eqn. (11.58) over all species and applying eqns. (11.1), (11.17),
and (11.22) and the requirement that there be no net creation of mass:

∑
i

[
∂ρi
∂t

+∇ · (ρi �v)
]
=

∑
i
(−∇ · �ji + ṙi)

so that

∂ρ
∂t
+∇ · (ρ�v) = 0 (11.59)

This equation applies any mixture, including those with varying density
(see Problem 6.36).

Incompressible mixtures. For an incompressible mixture,∇·�v = 0 (see
Sect. 6.2 or Problem 11.22), and the second term in eqn. (11.58) can be
written

∇ · (ρi �v) ≡ �v · ∇ρi + ρi ∇ · �v︸ ︷︷ ︸
=0

= �v · ∇ρi (11.60)

We may compare the resulting, incompressible species equation to the
incompressible energy equation, eqn. (6.37)

Dρi
Dt

= ∂ρi
∂t

+ �v · ∇ρi = −∇ · �ji + ṙi (11.61)

ρcp
DT
Dt

=ρcp
(
∂T
∂t
+ �v · ∇T

)
= −∇ · �q + q̇ (6.37)

We see, then, that: the reaction term, ṙi, is analogous to the heat gener-
ation term, q̇; the diffusional mass flux, �ji, is analogous to the heat flux,
�q; and that dρi = ρ dmi is analogous to ρcpdT .

We can use Fick’s law to eliminate �ji in eqn. (11.61). If the prod-
uct (ρDim) is independent of (x,y, z)—if it is spatially uniform—then
eqn. (11.61) becomes

D
Dt

mi = Dim∇2mi + ṙi/ρ (11.62)
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where the substantial derivative, D/Dt, is defined in eqn. (6.38). If, in-
stead, ρ and Dim are each spatially uniform, then

Dρi
Dt

= Dim∇2ρi + ṙi (11.63)

The equation of species conservation and its particular forms may
also be stated in molar form, using ci orxi,Ni, and J∗i (see Problem 11.24.)
Molar analysis sometimes has advantages over mass-based analysis, as
we discover in Section 11.6.

Interfacial boundary conditions

The equation of species conservation, like any differential equation, can-
not be solved until boundary conditions are specified. We are already
familiar with the general issue of boundary conditions from our study
of the heat equation. To find a temperature distribution, we specified
temperatures or heat fluxes at the boundaries of the domain of inter-
est. Likewise, to find a concentration distribution, we must specify the
concentration or flux of species i at the boundaries of the medium of
interest.

The interfaces we consider are always assumed to be in local thermo-
dynamic equilibrium. Thus, for example, temperature is continuous at
the interface between two media: the adjacent media cannot have differ-
ent temperatures at their common boundary because this would violate
the Zeroth Law of Thermodynamics. Concentration, on the other hand,
need not be continuous across an interface, even in a state of thermody-
namic equilibrium. Water in a drinking glass, for example, has disconti-
nous a change in the concentration of water at both its interface with the
glass and its interface with the air above.

In mass transfer problems, we are normally interested in situations
in which the species being transferred has some finite solubility in the
media on both sides of an interface. For example, gaseous ammonia is
absorbed into water in some types of refrigeration cycles. A gaseous
mixture containing some finite mass fraction of ammonia will produce
some different mass fraction of ammonia just inside an adjacent body of
water, as shown in Fig. 11.9.

To characterize the conditions at such an interface, we introduce
imaginary surfaces, s and u, very close to either side of the interface. In
the ammonia absorption process, then, we have a mass fraction mNH3,s
on the gas side of the interface and a different mass fraction mNH3,u on
the liquid side.



580 An Introduction to Mass Transfer §11.5

Figure 11.9 Absorption of ammonia into water.

In many mass transfer problems, we must find the concentration dis-
tribution of a species in one medium given only its concentration at the
interface in the adjacent medium. We might wish to find the distribution
of ammonia in the body of water knowing only the concentration of am-
monia on the gas side of the interface. This would force us to findmNH3,u
from mNH3,s and the interfacial temperature and pressure, since mNH3,u
is the appropriate boundary condition for the medium in question.

Thus, for the general mass transfer boundary condition, we must
specify not only the concentration of species i in the medium adjacent
to the medium of interest but also the solubility of species i from one
medium to the other. The solubility depends on the nature of the media
in question, the temperature and pressure, and the concentration of sub-
stance i in either medium. Although a detailed study of solubility and
phase equilibria is far beyond our scope (see, for example, [11.23]), we
illustrate these concepts with the following simple solubility relations.

For a gas mixture in contact with a liquid mixture, two simplified
relationships dictate the vapor composition. When the liquid is rich in
species i, the partial pressure of species i in the gas phase, pi, can be
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Figure 11.10 Typical partial and total
vapor-pressure plot for the vapor in
contact with a liquid solution, illustrating
the region of validity of Raoult’s and
Henry’s laws.

characterized approximately with Raoult’s law, which says that

pi = psat,i xi (11.64)

where psat,i is the saturation pressure of pure i at the interface temper-
ature and xi is the mole fraction of i in the liquid. When the species i is
dilute in the liquid, Henry’s law applies. It says that

pi = H xi (11.65)

where H is an empirical constant that is tabulated in the literature. Fig-
ure 11.10 shows how the vapor pressure varies over a liquid mixture and
indicates the regions of validity of Raoult’s and Henry’s laws.

If the vapor pressure were to obey Raoult’s law over the entire range of
liquid composition, we would have what is called an ideal solution. When
xi is much below unity, the ideal solution approximation is usually very
poor.
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Example 11.5

A tray of water sits outside on a warm day. If the air temperature
is 33◦C and evaporation cools the water surface to 29◦C, what is the
concentration of water vapor above the liquid surface?

Solution. Raoult’s law applies almost exactly in this situation, since
it happens that the concentration of air in water is virtually nil. Thus,
pH2O,s = psat,H2O(29◦C) by eqn. (11.64). From a steam table, we read
psat(29◦C) = 4.008 kPa and compute, from eqn. (11.16),

xH2O,s = psat/patm = 4.008/101.325 = 0.0396

Equation (11.9) gives

mH2O,s = (0.0396)(18.02)
[(0.0396)(18.02)+ (1− 0.0396)(28.96)]

= 0.0250

Stationary media

Let us now focus attention on nonreacting systems for which ṙi is zero
in eqn. (11.62). There are several special cases of this equation.

When there are no reactions and �v = 0, eqn. (11.62) reduces to

∂mi
∂t

= Dim∇2mi (11.66)

which is called themass diffusion equation and which has the same form
as the equation of heat conduction. Solutions for mass transfer in sta-
tionary media are entirely analogous to those for heat conduction when
the boundary conditions are the same. Generally, this equation applies
in solids or in stationary fluids when the mass flux, |�n|, is very small and
transport is purely diffusive.

Example 11.6

A semi-infinite stationary medium (medium 1) has an initially uniform
concentration,mi,0 of species i. From time t = 0 onward, we place the
end plane at x = 0 in contact with a second medium (medium 2) with
a concentration mi,s . What is the resulting distribution of species in
medium 1?
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Figure 11.11 Mass diffusion into a
semi-infinite stationary medium.

Solution. Once mi,s and the solubility data are known, mi,u can be
applied as the boundary condition at x = 0 for t > 0 (see Fig. 11.11).
Our mathematical problem then becomes

∂mi
∂t

= Dim1

∂2mi
∂x2

(11.67)

with

mi =mi,0 for t = 0 (all x)
mi =mi,u for t > 0 (x = 0)

This is exactly the mathematical form of the problem of transient
heat diffusion to a semi-infinite region (Section 5.6), and its solution
is completely analogous to eqn. (5.50):

mi −mi,u

mi,0 −mi,u
= erf


 x

2
√
Dim1t




The reader can solve all sorts of steady diffusion problems by direct anal-
ogy to the methods of Chapters 4 and 5.

Mass transfer with specified velocity fields

Mass transfer can alter the velocity field in a given situation. This is
apparent from the definition of the mass average velocity in eqn. (11.17),
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Figure 11.12 Concentration boundary layer on a flat plate.

when species with different velocities and partial densities are present.
Mass transfer can drive individual species in a different direction from
that of the imposed flow (which is driven by, say, a pressure gradient.)
We have noted that the mass flow is composed of contributions of both
bulk convection and diffusion:

�ni = ρi�v + �ji

In some cases, the bulk transport is largely determined by the given flow
field, and the mass transfer problem reduces to determining �ji as a small
component of �ni.

As a concrete example, consider a laminar flat-plate boundary layer
flow in which species i is transferred from the wall to the free stream,
as shown in Fig. 11.12. (Free stream values, at the edge of the b.l., are
labeled with the subscript e.) If the concentration difference, mi,s−mi,e,
is small, then the mass flux of i through the wall, ni,s , is small compared
to the bulk mass transfer, n, in the streamwise direction. Hence, we
expect the velocity field to be influenced only slightly by mass transfer
from the wall, so that �v is essentially that for the Blasius boundary layer.
It follows that the boundary layer approximations are applicable and that
the species equation can be reduced to

u
∂mi
∂x

+ v
∂mi
∂y

= Dim
∂2mi
∂y2

(11.68a)

where �v is the velocity from the Blasius solution, eqn. (6.19). The b.c.’s
are

mi(y →∞) =mi,e, mi(x = 0) =mi,e, mi(y = 0) =mi,s

This is fully analogous to the heat transfer problem for a flat plate flow
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with an isothermal wall:

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

(11.68b)

where �v is the Blasius value and the b.c.’s are

T(y →∞) = Te, T(x = 0) = Te, T(y = 0) = Ts

We can therefore find ni,s by analogy to our previous solution for qw .
We return to this sort of heat and mass transfer analogy in Section 11.7.

Steady mass transfer

Equation (11.58) makes it clear that steady mass transfer without reac-
tions is governed by the equation

∇ · �ni = 0 (11.69)

or, in one dimension,

dni
dx

= 0 (11.70)

that is, ni is independent of x.

Example 11.7

A solid slab of species 1 has different concentrations of species 2 at
the inside of each of its faces, as shown in Fig. 11.13. What is the
mass transfer rate of species 2 through the slab?

Solution. The mass transfer rate through the slab satisfies

dn2

dx
= 0

For a solid, �v � 0, so n2 � j2 and with Fick’s law we have

dn2

dx
� dj2

dx
= d
dx

(
−ρD21

dm2

dx

)
= 0

If ρD21 � constant, the right side gives

d2m2

dx2
= 0
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Figure 11.13 One-dimensional, steady
diffusion in a slab.

Integrating and applying the boundary conditions, m2(x = 0) =m2,0
and m2(x = L) =m2,L, we obtain the concentration distribution:

m2(x) =m2,0 +
(
m2,L −m2,0

)(x
L

)

and the mass flux is then

n2 � j2 = −ρD21

L
(
m2,L −m2,0

)
(11.71)

This, in essence, is the same kind of calculation we made in Exam-
ple 2.2 in Chapter 2.

11.6 Steady mass transfer through a stagnant layer

In 1874, Stefan presented his solution to the problem of evaporation from
a liquid pool at the bottom of a vertical tube over which a gas flows. This
configuration, often called a Stefan tube, is shown in Fig. 11.14. Vapor
leaving the liquid surface diffuses through the gas in the tube and is
carried away by the gas flow across top of the tube. If the gas stream
itself has only a relatively small concentration of vapor, then diffusion
is driven by the higher concentration of vapor over the liquid pool that
arises from the vapor pressure of the liquid. This process can be kept in
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Figure 11.14 The Stefan tube.

a steady state, since the constant replacement of the gas at the top of the
tube maintains the upper surface conditions. The Stefan tube has often
been used to measure diffusion coefficients.

Will convection occur in this arrangement? If the liquid species has
a higher molecular weight than the gas species, the density of the mix-
ture in the tube decreases with the height above the liquid surface. The
mixture is then buoyantly stable and natural convection will not occur.
However, mass transfer is still not purely diffusive in this problem.

There is a net upward flow of evaporating vapor in the steady state
but a negligible downflow of gas (assuming that the liquid is saturated
with the gas and thus is unable to absorb more.) Yet because there is a
concentration gradient of vapor, there must also be an opposing concen-
tration gradient of gas and an associated diffusional mass flux of gas [cf.
eqn. (11.22)]. For the gas in the tube to have a net diffusion flux when it is
stationary, there must be an induced upward convective velocity against
which the gas diffuses. The velocity at the liquid surface can be obtained,
using eqns. (11.21) and (11.22), as

v = −jgas,surface
/
ρgas,surface = jvapor,surface

/
ρgas,surface

In this situation, mass transfer has a decisive effect on the velocity field.
This problem may be generalized to a stagnant horizontal layer of
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Figure 11.15 Mass flow across a
stagnant horizontal layer.

a two-component fluid having different concentrations of the compo-
nents at each boundary, as shown in Fig. 11.15. The components will
diffuse across the layer and, in general, may each have a nonzero mass
flux through the layer. If there is no imposed horizontal velocity, the
mass transfer will induce none, but there may be a net vertical veloc-
ity produced by the upward or downward transfer of mass. Thus, both
convection and diffusion are likely to occur. In this section, we analyze
the general problem of steady mass transfer across a stagnant layer and
then consider some particular cases. The results obtained here form
an important prototype for our subsequent analyses of convective mass
transfer.

The solution of the mass transfer problem begins with an appropri-
ate form of the equation of species conservation. Since the mixture com-
position varies along the length of the tube, the density varies as well.
However, if we take the temperature and pressure to be constant, the
molar concentration of the mixture does not change through the tube.
The system is then most easily analyzed using the molar form of species
conservation.

For one-dimensional steady mass transfer, the mole fluxes N1 and N2

have only vertical components and depend only on the vertical coordi-
nate, y . Therefore, using ni = MiNi, we get, from eqn. (11.70),

dN1

dy
= dN2

dy
= 0

so that N1 and N2 are constant at the s-surface values, N1,s and N2,s .
These constants will be positive for upward mass flow. (For the orienta-
tions in Fig. 11.15, N1,s > 0 and N2,s < 0.) This is a fairly clear example
of steady-flow species conservation.
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Recalling the general expression for Ni and introducing Fick’s law, we
write

N1 = x1N − cD12
dx1

dy
= N1,s (11.72)

Here we have allowed for the possibility of a nonzero vertical convective
transport, x1N , induced by mass transfer. The total mole flux, N , must
be constant at its s-surface value; by eqn. (11.24), this is

N = N1,s +N2,s = Ns (11.73)

Substituting this result into eqn. (11.72), we obtain a differential equation
for x1:

cD12
dx1

dy
= Nsx1 −N1,s (11.74)

In this equation, x1 is a function ofy , theN ’s are constants, and cD12

depends on temperature and pressure. If the temperature and pressure
can be taken as constant in the stagnant layer, so, too, can cD12. Direct
integration then yields

Nsy
cD12

= ln
(
Nsx1 −N1,s

)+ constant (11.75)

We need to fix the constant and the two mole fluxes, N1,s and N2,s . To
do this, we apply the boundary conditions at the ends of the tube. The
first boundary condition is

x1 = x1,s at y = 0

and it requires that

constant = − ln(Nsx1,s −N1,s) (11.76)

so

Nsy
cD12

= ln

(
Nsx1 −N1,s

Nsx1,s −N1,s

)
(11.77)

The second boundary condition is

x1 = x1,e at y = L
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which yields

NsL
cD12

= ln

(
x1,e −N1,s/Ns

x1,s −N1,s/Ns

)
(11.78)

or

Ns = cD12

L
ln

(
1+ x1,e − x1,s

x1,s −N1,s/Ns

)
(11.79)

If we know the ratio N1,s/Ns for a given problem, we can find the
overall mass flux, Ns , explicitly. This ratio, which depends on the spe-
cific problem at hand, can be fixed by considering the rates at which the
species pass through the s-surface and forms the last boundary condi-
tion.

Example 11.8

Find the evaporation rate for the Stefan tube described at the begin-
ning of this section.

Solution. Let species 1 be the species of the liquid and species 2 be
the gas. The e-surface in our analysis is at the mouth of the tube and
the s-surface is just above the surface of the liquid. The gas flow over
the top may contain some concentration of the liquid species, x1,e,
and the vapor pressure of the liquid pool produces a concentration
x1,s . Only vapor is transferred through the s-surface, since the gas
is assumed to be essentially insoluble and will not be absorbed into
gas-saturated liquid. Thus, N2,s = 0, and Ns = N1,s = Nvapor,s is just
the evaporation rate of the liquid. The ratio N1,s/Ns is unity, and the
rate of evaporation is

Ns = Nvapor,s = cD12

L
ln

(
1+ x1,e − x1,s

x1,s − 1

)
(11.80)

Example 11.9

What will happen in the Stefan tube if the gas is bubbled up through
the liquid at some fixed rate, Ngas?
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Solution. In this case, we obtain a single equation forN1,s = Nvapor,s ,
the evaporation rate:

Ngas +N1,s = cD12

L
ln

(
1+ x1,e − x1,s

x1,s −N1,s/(N1,s +Ngas)

)
(11.81)

This equation determines N1,s , but it must be solved iteratively.

Once we have found the mole fluxes, we may compute the concentra-
tion distribution, x1(y), using eqn. (11.77):

x1(y) = N1,s

Ns
+ (x1,s −N1,s/Ns) exp(Nsy/cD12) (11.82)

Alternatively, we may eliminate Ns between eqns. (11.77) and (11.78) to
obtain the concentration distribution in a form that depends only on the
ratio N1,s/Ns :

x1 −N1,s/Ns

x1,s −N1,s/Ns
=

(
x1,e −N1,s/Ns

x1,s −N1,s/Ns

)y/L
(11.83)

Example 11.10

Find the concentration distribution of water vapor in a helium–water
Stefan tube at 325 K and 1 atm. The tube is 20 cm in length. Assume
the helium stream at the top of the tube to have a mole fraction of
water equal to 0.01.

Solution. Let water be species 1 and helium be species 2. The
vapor pressure of the liquid water is approximately the saturation
pressure at the water temperature. Using the steam tables, we get
pv = 1.341× 104 Pa and, from eqn. (11.16),

x1,s = 1.341× 104 Pa
101,325 Pa

= 0.1323

We use eqn. (11.14) to evaluate the mole concentration in the tube:

c = 101,325
8314.5(325)

= 0.03750 kmol/m3
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From eqn. (11.42) we obtain D12(325 K,1 atm) = 0.0001067 m2/s.
Then eqn. (11.80) gives the molar evaporation rate:

N1,s = 0.03750(1.067× 10−4)
0.20

ln
(

1+ 0.01− 0.1323
0.1323− 1

)
= 2.638× 10−6 kmol/m2·s

This corresponds to a mass evaporation rate:

n1,s = 4.754× 10−5 kg/m2·s
The concentration distribution of water vapor [eqn. (11.82)] is

x1(y) = 1− 0.8677 exp(0.6593y)

where y is expressed in meters.

The present analysis has two serious shortcomings when it is ap-
plied to real Stefan tubes. First, it applies only when the evaporating
species is heavier than the gas into which it evaporates. If the evaporat-
ing species is lighter, then the density increases toward the top of the
tube and buoyant instability can give rise to natural convection. (This is
discussed in [11.24].)

The second limitation is the assumption that conditions are isother-
mal within the tube. Because a heat sink is associated with the latent heat
of vaporization, the gas mixture tends to cool near the interface. The
resulting temperature variations within the tube can affect the assump-
tion that cD12 is constant and can potentially contribute to buoyancy
effects as well. Since Stefan tubes are widely used to measure diffusion
coefficients, the preservation of isothermal conditions has received some
attention in the literature.

A mass-based analysis of convection problems often becomes more
convenient than a molar analysis because it can be related directly to
the mass-averaged velocity used in the equations of fluid motion. The
problem dealt with in this section can be solved on a mass basis, as-
suming a constant value of ρD12 (see Problem 11.33). However, if the
two species have greatly differing molecular weights or if the mixture
composition changes strongly across the layer, then ρ can vary signifi-
cantly within the layer and the molar analysis yields better results (see
Problem 11.34). Nevertheless, the mass-based solution of this problem
provides an important approximation in our analysis of convective mass
transfer in the next section.
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11.7 Mass transfer coefficients

Scope

We have found that in convective heat transfer problems, it is useful to
express the heat flux from a surface, q, as the product of a heat transfer
coefficient, h, and a driving force for heat transfer, ∆T—at least when h
is not strongly dependent on ∆T . Thus,

q = h
(
Tbody − T∞

)
(1.17)

In convective mass transfer problems, we would also like to express the
mass flux from a surface, ṁ′′, as the product of a mass transfer coef-
ficient and a driving force for mass transfer. Heat and mass transfer
were shown to be very similar processes in Section 11.5, so it seems rea-
sonable that the previous results for heat transfer coefficients might be
adapted to the problem of mass transfer. However, because of the strong
influence mass transfer can have on the convective velocity field, the flow
effects of a mass flux from a wall must also be considered in modeling
mass convection processes.

The mass transfer coefficient is developed in three stages in this sec-
tion: First, we define it and derive the appropriate driving force for mass
transfer. Next, we relate the mass transfer coefficient at finite mass trans-
fer rates to that at very low mass transfer rates, using a simple model
for the mass convection boundary layer. Finally, we present the analogy
between the low-rate mass transfer coefficient and the heat transfer co-
efficients of previous chapters. In following these steps, we create the
apparatus for solving a wide variety of mass transfer problems using
methods and results from Chapters 6, 7, and 8.

Themass transfer coefficient and themass transfer driving force

Figure 11.16 shows a boundary layer over a wall through which there is
a net mass transfer, ṁ′′, of the various species in the direction normal
to the wall. In particular, we focus on species i. In the free stream, i has
a concentration mi,e; at the wall, it has a concentration mi,s .

The mass flux of i leaving the wall is obtained from eqn. (11.21):

ni,s =mi,sṁ′′ + ji,s (11.84)

It is desirable to express ṁ′′ in terms of the concentrationsmi,s andmi,e.
By analogy to the definition of the heat transfer coefficient, we define the
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Figure 11.16 The mass concentration
boundary layer.

mass transfer coefficient for species i, gm,i kg/m2·s, as

gm,i ≡ ji,s
/ (
mi,s −mi,e

)
(11.85)

Thus,

ni,s =mi,sṁ′′ + gm,i
(
mi,s −mi,e

)
(11.86)

It is important to recognize that the mass transfer coefficient is based
on the diffusive transfer from the wall, just as h is. Equation (11.86) may
be rearranged as

ṁ′′ = gm,i

(
mi,e −mi,s

mi,s −ni,s/ṁ′′

)
(11.87)

which express the total mass transfer ṁ′′, through the wall as the prod-
uct of the mass transfer coefficient and a ratio of concentrations. This
ratio is called the mass transfer driving force for species i:

Bm,i ≡
(

mi,e −mi,s

mi,s −ni,s/ṁ′′

)
(11.88)

The ratio of mass fluxes in the denominator is called themass fraction
in the transferred state, denoted as mi,t :

mi,t ≡ ni,s/ṁ′′ (11.89)

The mass fraction in the transferred state is simply the fraction of the
total mass flux, ṁ′′, which is made up of species i. It is not really a mass
fraction in the sense of Section 11.2 because it can have any value from
−∞ to +∞, depending on the relative magnitudes of ṁ′′ and ni,s . If, for
example, n1,s � −n2,s in a binary mixture, then ṁ′′ is very small and
both m1,t and m2,t are very large.
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Equations (11.87), (11.88), and (11.89) provide a formulation of mass
transfer problems in terms of a mass transfer coefficient, gm,i, and a
driving force for mass transfer, Bm,i:

ṁ′′ = gm,iBm,i (11.90)

where

Bm,i =
(
mi,e −mi,s

mi,s −mi,t

)
, mi,t = ni,s/ṁ′′ (11.91)

Equation (11.90) is the mass transfer analog of eqn. (1.17).
These relations are based on an arbitrary species, i. The mass trans-

fer rate may equally well be calculated using any species in a mixture;
one obtains the same result for each. This is well illustrated in a binary
mixture for which one may show (Problem 11.36) that

gm,1 = gm,2 and Bm,1 = Bm,2

In many situations, only one species is transferred at the wall. If
species i is the only one passing through the wall, then ni,s = ṁ′′, so
that mt,i = 1. The mass transfer driving force is simply

Bm,i =
(
mi,e −mi,s

mi,s − 1

)
one species
transferred

(11.92)

and it depends only on the actual mass fractions, mi,e and mi,s . The
evaporation of vapor from a liquid surface is an important example of
single-species transfer.

Example 11.11

A pan of hot water with a surface temperature of 75◦C is placed in
an air stream that has a mass fraction of water equal to 0.05. If the
average mass transfer coefficient for water over the pan is gm,H2O =
0.0169 kg/m2·s and the pan has a surface area of 0.04 m2, what is
the evaporation rate?

Solution. Only water vapor passes through the liquid surface, since
air is not strongly absorbed into water under normal conditions. Thus,
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we use eqn. (11.92) for the driving force for mass transfer. Refer-
ence to a steam table shows the saturation pressure of water to be
0.381 atm at 75◦C, so

xH2O,s = 0.381/1 = 0.381

from which we obtain

mH2O,s = 0.277

so that

Bi,m = 0.05− 0.277
0.277− 1.0

= 0.314

Thus,

ṁH2O = ṁ′′(0.04 m2) = (0.0169 kg/m2·s)(0.314)(0.04 m2)
= 0.000212 kg/s = 764 gm/hr

The effect of mass transfer rates on the mass transfer coeffi-
cient

We still face the task of finding the mass transfer coefficient, gm,i. The
most obvious way to do this would be to apply the same methods we used
to find the heat transfer coefficient in Chapters 6 through 8—numerical or
analytical solution of the momentum and species equations or direct ex-
perimental simulation of the mass transfer problem. These approaches
are often used for specific mass transfer problems, but they are one level
more complicated than the analogous heat transfer problems, since the
flow field is coupled to the mass transfer rate. Simple correlations and
analytical formulas such as those used to calculate h are not so readily
available for mass transfer problems. We instead employ a widely used
approximate method that allows us to calculate gm,i from corresponding
results for h in a given geometry by applying a correction for the effect
of finite mass transfer rates.

To isolate the effect of ṁ′′ on the mass transfer coefficient, we first
define the mass transfer coefficient at zero net mass transfer, g∗m,i:

g∗m,i ≡ lim
ṁ′′ �→0

gm,i

As the mass transfer rate becomes very small, eqn. (11.86) shows that

ni,s � ji,s � g∗m,i
(
mi,s −mi,e

)
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Figure 11.17 A stagnant film.

Thus, g∗m,i characterizes mass transfer when rates are low enough that
mass flow occurs primarily by diffusion. Although gm,i depends directly
on the rate of mass transfer, g∗m,i does not; it is determined by flow
geometry and physical properties. If we introduce an appropriate model
for the mass transfer through a boundary layer, we can express gm,i in
terms of g∗m,i and the mass transfer driving force. This will make the
determination of the mass transfer coefficient much simpler with little
sacrifice of accuracy.

One way of modeling mass transfer effects on gm,i is simply to con-
sider transport across a stagnant film—a stationary layer of fluid with
no horizontal gradients in it, as shown in Fig. 11.17. This layer may be
viewed as a first approximation to the real boundary layer, in which the
fluid near the wall is slowed by the no-slip condition. The film thickness,
δc , is an effective local concentration boundary layer thickness. If con-
centrations are fixed on either of the horizontal boundaries of the layer,
this becomes the configuration dealt with in the previous section (i.e.,
Fig. 11.15). Thus, the solution obtained in the previous section—eqn.
(11.79)—also gives the rate of mass transfer across the stagnant film.

It is convenient to use the mass-based analog of the mole-based eqn. (11.79)
in the present mass-based analysis. This analog can be shown to be (Prob-
lem 11.33)

ṁ′′ = ρDim
δc

ln

(
1+ mi,e −mi,s

mi,s −ni,s/ṁ′′

)

which can be recast in the more suggestive form

ṁ′′ = ρDim
δc

[
ln(1+ Bm,i)

Bm,i

]
Bm,i (11.93)

Comparing this equation with eqn. (11.90), we see that

gm,i = ρDim
δc

[
ln(1+ Bm,i)

Bm,i

]
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When ṁ′′ approaches zero,

g∗m,i = lim
ṁ′′ �→0

gm,i = lim
Bm,i �→0

gm,i = ρDim
δc

which corresponds to one-dimensional diffusion through a slab of thick-
ness δc [cf. eqn. (11.71)]. Hence,

gm,i = g∗m,i

[
ln(1+ Bm,i)

Bm,i

]
(11.94)

We see that the value of g∗m,i depends on an effective concentration
boundary layer thickness, δc , which is determined by solving the convec-
tion problem for ṁ′′ → 0. In other words, the correct value of δc , and
thus g∗m,i, may be found for any configuration by an independent analy-
sis. Our model and result for finite mass transfer rates are thus justified
for a wide variety of convection problems. We now have a correction for
finite mass transfer rates to be used in conjunction with low-rate results.
(Analogous stagnant film analyses of heat and momentum transport may
also be made, as discussed in Problem 11.37.)

The group [ln(1+Bm,i)]/Bm,i is called the blowing factor. It accounts
for mass transfer effects on the velocity field. When Bm,i > 0, we have
mass flow away from the wall (or blowing.) In this case, the blowing
factor is always a positive number less than unity, so blowing reduces
gm,i. When Bm,i < 0, we have mass flow toward the wall (or suction),
and the blowing factor is a positive number greater than unity. Thus,
gm,i is increased by suction. These trends may be better understood if
we note that wall suction removes the slow fluid at the wall and thins
the b.l. The thinner b.l. offers less resistance to mass transfer. Likewise,
blowing tends to thicken the boundary layer, increasing the resistance to
mass transfer.

The stagnant film b.l. model ignores details of the flow in the b.l. and
focuses on the balance of mass fluxes across it. It is equally valid for
both laminar and turbulent flows.

Low mass transfer rates: The analogy between heat and mass
transfer

To complete the solution of the mass transfer problem, we must find g∗m,i
for a given geometry. We do this by returning to the analogy between
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heat and mass transfer that exists when the mass transfer rates are low
enough that they do not affect the velocity field.

We have seen in Sect. 11.5 that the equation of species conservation
and the energy equation were quite similar in an incompressible flow.
If there are no reactions and no heat generation, then eqns. (11.61) and
(6.37) can be written as

∂ρi
∂t

+ �v · ∇ρi = −∇ · �ji

ρcp
(
∂T
∂t
+ �v · ∇T

)
= −∇ · �q

In each case, the conservation equation expresses changes in the amount
of heat or energy per unit volume that results from convection by a given
velocity field and from diffusion under either Fick’s or Fourier’s law.

We may identify the analogous quantities in these equations. For
capacity per unit volume, we have

dρi ⇐⇒ ρcpdT or ρ dmi ⇐⇒ ρcpdT (11.95a)

From the flux laws, we have

�ji = −ρDim∇mi = −Dim
(
ρ∇mi

)
�q = −k∇T = − k

ρcp

(
ρcp∇T

)
so that

Dim ⇐⇒ k
ρcp

= α or ρDim ⇐⇒ k
cp

(11.95b)

This result further implies that

Sc = ν
Dim

⇐⇒ Pr = ν
α
= µcp

k
(11.95c)

Finally, from the transfer coefficients, we have7

�ji,s = g∗m,i
(
mi,s −mi,e

) =
(
g∗m,i

ρ

)
ρ
(
mi,s −mi,e

)

�qs = h∗ (Ts − Te) =
(
h∗

ρcp

)
ρcp (Ts − Te)

7We henceforth denote by h∗ the heat transfer coefficient at zero net mass transfer,
since high mass flux can alter the heat transfer coefficient, h, just as it does the mass
transfer coefficient gm,i. This is discussed further in Section 11.8.
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so that

g∗m,i ⇐⇒
h∗

cp
(11.95d)

From these comparisons, we see that the solution of a heat convection
problem becomes the solution of a low-rate mass convection problem
upon replacing the variables in the heat transfer problem with the mass
transfer variables given by eqns. (11.95). Solutions for convective heat
transfer coefficients are usually expressed in terms of the Nusselt number
as a function of Reynolds and Prandtl number

Nux = h∗x
k

= (h∗/cp)x
k/cp

= fn (Rex,Pr) (11.96)

For convective mass transfer problems, we expect the same functional
dependence after we make the substitutions indicated above. Thus, if
we replace h∗/cp by g∗m,i, k/cp by ρDi,m, and Pr by Sc, we obtain

Num,x ≡
g∗m,ix
ρDim

= fn (Rex, Sc) (11.97)

where Num,x , the Nusselt number for mass transfer, is defined as indi-
cated. Num is sometimes called the Sherwood number8, written as Sh.

Example 11.12

Calculate the mass transfer coefficient for Example 11.11 if the air
speed is 5 m/s, the length of the pan in the flow direction is 20 cm,
and the air temperature is 25◦C.

Solution. The water surface is essentially a flat plate, as shown in
Fig. 11.18. To find the appropriate equation for the Nusselt number,
we must first compute ReL.

The properties are evaluated at the average film temperature, (75+
25)/2 = 50◦C, and the film composition,

mf,H2O = (0.050+ 0.277)/2 = 0.164

8Thomas K. Sherwood (1903–1976) obtained his doctoral degree at M.I.T. under War-
ren K. Lewis in 1929 and served as a professor of Chemical Engineering there from
1930 to 1969. His research dealt with mass transfer and related industrial processes.
Sherwood was also the author of a very influential textbook on mass transfer.
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Figure 11.18 Evaporation from a tray of water.

For these conditions, we find the mixture molecular weight from eqn.
(11.8) as Mf = 26.34 kg/kmol. Thus, from the ideal gas law,

ρf = (101,325)(26.34)/(8314.5)(323.15) = 0.993 kg/m3

From Appendix A, we get µair = 1.959×10−5 kg/m·s, and eqn. (11.51)
yields µwater vapor = 1.172 × 10−5 kg/m·s. Then eqn. (11.54), with
xH2O,f = 0.240 and xair,f = 0.760, yields

µf = 1.77× 10−5 kg/m·s and νf = (µ/ρ)f = 1.78× 10−5m2/s

and ReL = 5(0.2)/(1.78× 10−5) = 56,200, so the flow must be lami-
nar.

The appropriate Nusselt number is obtained from the mass trans-
fer version of eqn. (6.68):

Num,L = 0.664 Re1/2
L Sc1/3

Equation (11.42) yields DH2O,air = 2.929× 10−5m2/s, so

Sc = 1.78/2.929 = 0.608

and

Num,L = 133

Hence,

g∗m,H2O = Num,L(ρDH2O,air/L) = 0.0194 kg/m2·s
Finally,

gm,H2O = 0.0194 ln(1.309)/0.309 = 0.0169 kg/m2·s
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In this case, the blowing factor is 0.871—slightly less than unity.
Thus, mild blowing has reduced the mass transfer coefficient.

When we apply the analogy between heat transfer and mass transfer
to calculate g∗m,i, we must consider the boundary condition at the wall.
We dealt with two common types of wall condition in the study of heat
transfer: uniform temperature and uniform heat flux. The analogous
mass transfer wall conditions are uniform concentration and uniform
mass flux. We used the mass transfer analog of the uniform wall temper-
ature solution in the preceding example, since the mass fraction of water
vapor over the liquid surface was uniform over the whole pan. Had the
mass flux been uniform at the wall, we would have used the analog of a
uniform heat flux solution.

When the mass transfer driving force is small enough, the low-rate
mass transfer coefficient itself is an adequate approximation to the actual
mass transfer coefficient. This is because the blowing factor tends toward
unity as Bm,i �→ 0:

lim
Bm,i �→0

ln(1+ Bm,i)
Bm,i

= 1

Thus, for small values of Bm,i, gm,i � g∗m,i.
The calculation of mass transfer proceeds in one of two ways for low

rates of mass transfer. One way is if the ratio ni,s/ṁ′′ is fixed at a finite
value while ṁ′′ �→ 0. (This would be the case when only one species is
transferred and ni,s/ṁ′′ = 1.) Then the mass flux at low rates is

ṁ′′ � g∗m,iBm,i (11.98)

In this case, convective and diffusive contributions to ni,s are of the same
order of magnitude.

If, on the other hand, ni,s is finite while ṁ′′ �→ 0, then

ni,s � ji,s � g∗m,i(mi,s −mi,e) (11.99)

The transport in this case is purely diffusive. Problem 11.43 illustrates
how this occurs in the process of catalysis.

An estimate of the blowing factor when Bm,i is small often reveals
that adequate results will be obtained using low-rate theory. This can
considerably reduce the complexity of a calculation. If, for example,
Bm,i = 0.06, then [ln(1 + Bm)]/Bm = 0.97 and an error of only 3 per-
cent is introduced by assuming low rates. This level of accuracy is
adequate for most engineering calculations.
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Natural convection in mass transfer

In Chapter 8 we saw that the density differences produced by temper-
ature variations can lead to flow and convection in a fluid. Variations
in fluid composition can also produce density variations that result in
natural convection mass transfer. This type of natural convection flow
is still governed by eqn. (8.3):

u
∂u
∂x

+ v
∂u
∂y

= (1− ρ∞/ρ)g + ν
∂2u
∂y2

but the species equation is now used in place of the energy equation in
determining the distribution of density. Rather than solving eqn. (8.3)
and the species equation for specific mass transfer problems, we again
turn to the analogy between heat and mass transfer.

In analyzing natural convection heat transfer, we eliminated ρ from
eqn. (8.3) using (1 − ρ∞/ρ) = β(T − T∞), and the resulting Grashof and
Rayleigh numbers came out in terms of an appropriate β∆T instead of
∆ρ/ρ. These groups could just as well be written for the heat transfer
problem as

GrL = g∆ρL3

ρν2
and RaL = g∆ρL3

ραν
= g∆ρL3

µα
(11.100)

although ∆ρ would still have to be evaluated from ∆T .
With Gr and Pr expressed in terms of density differences instead of

temperature differences, the analogy between heat transfer and low-rate
mass transfer may be used directly to adapt natural convection heat
transfer predictions to the prediction of natural convection mass trans-
fer. As before, we replace Nu by Num and Pr by Sc. But this time we also
write

RaL = GrLSc = g∆ρL3

µD12
(11.101)

and calculate GrL as in eqn. (11.100). The density difference must now
be calculated from the concentration difference.

Example 11.13

31.3 mg/cm2·hr of helium is slowly bled through a porous vertical
wall, 40 cm high, into the surrounding air. Both the helium and the
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air are at 300 K, and the environment is at 1 atm. What is the average
concentration of helium at the wall?

Solution. This is a uniform wall flux, natural convection problem.
The appropriate Nusselt number is obtained from the mass transfer
analog of eqn. (8.43):

(Num,L)5/4 − 0.68(Num,L)1/4 = 0.67(Ra∗L )1/4

[1+ (0.492/Sc)9/16]4/9

with

Ra∗L =
g∆ρṁ′′L4

µρD2
He,airBm,He

The problem is to find a value ofmHe,s that satisfies ṁ′′ = gm,HeBm,He.
The mass transfer coefficient, gm,He, depends onmHe,s , so an iterative
solution is required.

As a first guess, we pick mHe,s = 0.01. Then the film composi-
tion is mHe,f = (0.010 + 0)/2 = 0.005, since mHe,e = 0. The usual
calculations give the film and wall densities as

ρf = 1.141 kg/m3 and ρs = 1.107 kg/m3

and the diffusion coefficient as

DHe,air = 7.119× 10−5 m2/s.

Reference to Appendix A shows that µair is close to µHe at 300 K, so
at this low concentration of helium we take

µf � µair = 1.853× 10−5 kg/m·s.

The corresponding Schmidt number is Sc = 0.2281. Furthermore,

ρe = ρair = 1.183 kg/m3

Now, because the concentration difference is small, we test the
blowing factor to see if the low-rate theory is adequate:

Bm,He = mHe,e −mHe,s

mHe,s − 1
= −0.01

0.01− 1
= 0.0101
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and

ln(1+ Bm,He)
Bm,He

= 0.995

Thus, the low-rate approach to this problem is almost exact. We can
then set

ṁ′′ = g∗m,He Bm,He

and we need not introduce the log term into subsequent calculations.
Since ṁ′′/Bm,He = g∗m,He, we may divide the Nusselt number equa-

tion we started with by (g∗m,He)1/4. Using the physical property data,
we get

g∗m,He

[
0.40

1.141(7.119× 10−5)

]5/4

− 0.68
[

0.40
1.141(7.119× 10−5)

]1/4

= 0.67
[1+ (0.492/0.2281)9/16]4/9

×
[

9.806(1.183− 1.107)(0.40)4

1.853× 10−5(1.141)(7.119× 10−5)2

]1/4

This yields

g∗m,He = 0.00711 kg/m2·s
The average mass fraction at the wall corresponding to this value

of g∗m,He is found from Bm,He:

Bm,He = ṁ′′/g∗m,He = 31.3(10−6)(104)
/
(0.00711)(3600) = 0.0122

so that

mHe,s = 0.0123

which is only 20 percent higher than our initial guess of 0.01.
Using the value above as our second guess for mHe,s , we repeat

the preceding calculations with revised values for the densities. The
results are

g∗m,He = 0.00736 kg/m2·s
and

mHe,s = 0.0120

Thus, our second guess put us within 3 percent of the first result, and
a third guess should not be needed.
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Thus far, we have treated separately the cases of thermally driven
and concentration-driven natural convection. If both temperature and
density vary, the appropriate Gr or Ra may be calculated using density
differences based on the local mi and T , provided that the Prandtl and
Schmidt numbers are about the same (that is, the Lewis number � 1).
This is usually true in gases. If the Lewis number is far from unity, the
analogy between heat and mass transfer breaks down in the solution
of those natural convection problems that involve both heat and mass
transfer.

11.8 Simultaneous heat and mass transfer

Some of the most important engineering mass transfer processes are
those that occur simultaneously with heat transfer. Cooling towers, dry-
ing equipment, combustion chambers, and humidifiers are just a few of
the kinds of equipment in which heat and mass transfer are intimately
coupled. In this section we introduce a procedure for calculating the ef-
fect of mass transfer on the heat transfer coefficients that were developed
in previous chapters without reference to mass transfer.

In a flow with mass transfer, the transport of enthalpy by individ-
ual species must enter the energy balance along with heat conduction
through the fluid mixture. Each species in a mixture carries its own en-
thalpy, hi. For a steady flow without internal heat generation, we may
rewrite the energy balance, eqn. (6.36), as

−
∫
S
(−k∇T) · d�S −

∫
S


∑

i
ρihi �vi


 · d�S = 0

where the second term accounts for enthalpy transport by each species
in the mixture. The usual procedure of applying Gauss’s theorem and
requiring the integrand to vanish identically gives

∇ ·

−k∇T +∑

i
ρihi �vi


 = 0 (11.102)

This steady-state equation expresses conservation of the total energy
flux—the sum of heat conduction and enthalpy transport.

Let us restrict attention to the transport of a single species, i, across
a boundary layer. We again use the stagnant film model for the thermal
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Figure 11.19 Energy transport in a stagnant film.

boundary layer and consider the flow of energy (see Fig. 11.19). Equa-
tion (11.102) now simplifies to

d
dy

(
−kdT

dy
+ ρihivi

)
= 0 (11.103)

From eqn. (11.70) for steady, one-dimensional flow,

d
dy

(ρivi) = dni
dy

= 0

so

ni = constant = ni,s

If we neglect pressure variations (as in Sect. 6.3), the enthalpy may be
written as hi = cp,i(T − Tref), and eqn. (11.103) becomes

d
dy

(
−kdT

dy
+ni,scp,iT

)
= 0

Integrating twice and applying the boundary conditions

T(y = 0) = Ts and T(y = δt) = Te

we obtain the temperature profile of the stagnant film:

T − Ts
Te − Ts

=
exp

(ni,scp,i
k

y
)
− 1

exp
(ni,scp,i

k
δt

)
− 1

(11.104)
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The temperature distribution may be used to find the heat transfer
coefficient according to its definition [eqn. (6.5)]:

h ≡
−kdT

dy

∣∣∣∣∣
s

Ts − Te
= ni,scp,i

exp
(ni,scp,i

k
δt

)
− 1

(11.105)

Equation (11.105) can be related to the heat transfer coefficient at zero
mass transfer, h∗—called h in the previous chapters—by taking the limit
as ni,s goes to zero:

h∗ ≡ lim
ni,s �→0

h = k
δt

(11.106)

Thus the low-rate heat transfer coefficient, h∗, is the same as that for
conduction through a fluid layer of thickness δt , in agreement with the
stagnant film concept. Because we presume thath∗ has been obtained for
a given geometry by conventional heat convection analysis, eqn. (11.106)
really defines the effective thermal boundary layer thickness, δt , rather
than h∗.

The substitution of eqn. (11.106) into eqn. (11.105) yields

h = ni,scp,i
exp(ni,scp,i/h∗)− 1

(11.107)

Equation (11.107) shows the primary effects of mass transfer on h. When
ni,s is large and positive—the blowing case—h becomes small. Thus,
blowing decreases the heat transfer coefficient, just as it decreases the
mass transfer coefficient. Likewise, when ni,s is large and negative—
the suction case—h becomes very large; so suction increases the heat
transfer coefficient as well as the mass transfer coefficient.

At this point, it is well to consider what reference state should be used
to approximate variable property effects. In Section 11.7, we calculated
g∗m,i (and thus gm,i) at the film temperature and film composition, as
though mass transfer were occurring at the mean mixture composition
and temperature. This is because g∗m,i occurs in the limit as Bm,i �→ 0; in
this limit, the stagnant layer takes on the film composition as the mass
transfer rate vanishes. We evaluate g∗m,i the same way when heat transfer
occurs simultaneously.

To approximate the effect of variable properties on h, we must select
reference states for h∗ and cp,i. Both h∗ and cp,i must be evaluated at
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Figure 11.20 Transpiration cooling.

the film temperature, and cp,i is independent of composition. However,
the heat transfer coefficient at zero mass transfer, h∗, occurs in the limit
as ni,s goes to zero. In this limit, there are no concentration gradients
in the stagnant film and the film has the composition of the free stream.
Thus, h∗ is best approximated at the film temperature and free stream
composition.

Energy balances in simultaneous heat and mass transfer

To calculate simultaneous heat and mass transfer rates, one must gen-
erally look at the energy balance below the wall as well as across the
boundary layer. Consider, for example, the process of transpiration cool-
ing, shown in Fig. 11.20. Here a wall exposed to high temperature gases is
protected by injecting a cooler gas into the flow through a porous section
of the surface. A portion of the heat transfer to the wall is taken up in
raising the temperature (or, more specifically, the enthalpy) of the tran-
spired gas, and blowing serves to reduceh belowh∗ as well. This process
is frequently used to cool turbine blades and combustion chamber walls.

Let us construct an energy balance for a steady state in which the wall
has reached a temperature Ts . The enthalpy and heat fluxes are as shown
in Fig. 11.20. We take the coolant reservoir to be far enough back from
the surface that temperature gradients at the r -surface are negligible and
the conductive heat flux, qr , is zero. An energy balance between the r -
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and u-surfaces gives

ni,rhi,r = ni,uhi,u − qu (11.108)

and between the u- and s-surfaces,

ni,uhi,u − qu = ni,shi,s − qs (11.109)

Since there is no change in the enthalpy of the transpired species
when it passes through the interface,

hi,u = hi,s (11.110)

and since the process is steady, conservation of mass gives

ni,r = ni,u = ni,s (11.111)

Thus, eqn. (11.109) reduces to

qs = qu (11.112)

The flux qu is merely the conductive heat flux into the wall, while qs is
the convective heat transfer,

qs = h(Te − Ts) (11.113)

(The reader should take care to distinguish the heat transfer coefficient,
h, from the enthalpy, hi.)

Combining eqns. (11.108) through (11.113), we find

ni,s(hi,s − hi,r ) = h(Te − Ts) (11.114)

This equation shows that, at steady state, the heat convection to the
wall is absorbed by the enthalpy rise of the transpired gas. Writing the
enthalpy as hi = cp,i(Ts − Tref), we obtain

ni,scp,i(Ts − Tr ) = h(Te − Ts) (11.115)

or

Ts =
hTe +ni,scp,iTr
h+ni,scp,i

(11.116)

It is left as an exercise (Problem 11.46) to show that

Ts = Tr + (Te − Tr ) exp(−ni,scp,i/h∗) (11.117)
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The wall temperature decreases exponentially to Tr as the mass flux of
the transpired gas increases. Transpiration cooling is also enhanced by
injecting a gas with a high specific heat.

A common variant of this process is sweat cooling, in which a liquid is
bled through the porous wall. The liquid is vaporized by convective heat
flow to the wall, and the latent heat of vaporization acts as a sink. Fig-
ure 11.20 also represents this process. The balances, eqns. (11.108) and
(11.109), as well as mass conservation, eqn. (11.111), still apply. However,
the enthalpies at the interface now differ by the latent heat of vaporiza-
tion:

hi,u + hfg = hi,s (11.118)

Thus, eqn. (11.112) becomes

qs = qu + hfgni,s

and eqn. (11.114) takes the form

ni,s[hfg + cp,if (Ts − Tr )] = h(Te − Ts) (11.119)

where cp,if is the specific heat of liquid i. Since the latent heat is gener-
ally much larger than the sensible heat, eqn. (11.119) reflects the greater
efficiency of sweat cooling as compared to transpiration cooling.

When the rate of mass transfer is small, we approximate h by h∗,
just as we approximated gm by g∗m at low mass transfer rates. The ap-
proximation h = h∗ may be tested by considering the ratio ni,scp,i/h∗
in eqn. (11.107). For example, if ni,scp,i/h∗ = 0.06, then h/h∗ = 0.97,
and h = h∗ within an error of only 3 percent. One common situation in
which heat and mass transfer rates are given by low-rate approximations
is the evaporation of water into air at low or moderate temperatures, as
in the following example.

Example 11.14

The humidity of air is commonly measured with a sling psychrometer.
A wet cloth is wrapped about the bulb of one thermometer, as shown
in Fig. 11.21. This so-called wet-bulb thermometer is mounted, along
with a second dry-bulb thermometer, on a swivel handle, and the pair
are “slung” in a rotary motion until they reach steady state.

The wet-bulb thermometer is cooled, as the latent heat of the va-
porized water is given up, until it reaches the temperature at which
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Figure 11.21 The wet bulb of a sling psychrometer.

the rate of cooling by evaporation just balances the rate of convec-
tive heating by the warmer air. This temperature, which is called the
wet-bulb temperature, is directly related to the amount of water in the
surrounding air.9

Find the relationship between the wet-bulb temperature and the
amount of water in the ambient air.

Solution. The highest air temperatures likely to be encountered in
meteorological practice are fairly low, so the rate of mass transfer
should be small. We can test this suggestion by choosing a situation
that should maximize the evaporation rate—say, ambient air at a high
temperature of 120◦F and bone-dry air (mH2O,e = 0)—and then com-
puting the resulting value of the blowing factor as an upper bound:

xH2O � psat(120◦F)/1 atm = 0.115

9The wet-bulb temperature for air–water systems is very nearly the adiabatic satu-
ration temperature of the air–water mixture. This is the temperature reached by the
mixture if it is brought to saturation with water by adding water vapor without adding
heat. It is a thermodynamic property of an air–water combination.
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so

mH2O,s � 0.0750

Thus,

Bm,H2O � 0.0811

and [
1− ln(1+ Bm,H2O)

Bm,H2O

]
� 0.038

This means that under the worst normal circumstances, the low-
rate theory should deviate by only 4 percent from the actual rate of
evaporation. We assume that this estimate holds for the heat trans-
fer as well, although this assumption must be tested a posteriori by
computing nH2O,scp,H2O/h∗.

There is no heat flux through the u-surface once it reaches the
wet-bulb temperature, so the energy balance between the u- and s-
surfaces is

nH2O,shH2O,s − qs = nH2O,uhH2O,u

or

nH2O,shfg|Twet-bulb = h(Te − Twet-bulb)

Since low rates are indicated, this can be written as

g∗m,H2OBm,H2Ohfg|Twet-bulb = h∗(Te − Twet-bulb) (11.120)

Since the transfer coefficients depend on the geometry and flow rates
of the psychrometer, it would appear that Twet-bulb should depend
on the device used to measure it. However, we can use the analogy
between heat and mass transfer and results given in Chapter 7 to
write

h∗D
k

= C ReaPrb

and

g∗mD
ρD12

= C ReaScb
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where C is a constant, a � 1/2, and b � 1/3. Thus,

h∗

g∗mcp
D12

α
=

(
Pr
Sc

)b

Both α/D12 and Sc/Pr are equal to the Lewis number, Le. Hence,

h∗

g∗mcp
= Le1−b � Le2/3 (11.121)

This type of relationship between h∗ and g∗m was first developed
by W. K. Lewis in 1922 for the case in which Le = 1 [11.25]. (The Lewis
number for air–water systems, Lewis’s primary interest, is about 0.847,
so the approximation was not too bad.) The more general form,
eqn. (11.121), is another Reynolds-Colburn type of analogy, similar
to eqn. (6.75), which was subsequently given by Chilton and Col-
burn [11.26] in 1934. Equation (11.121) shows that the ratio of h∗
to g∗m depends primarily on the physical properties of the mixture,
rather than the geometry or flow rate.

Equation (11.120) can now be written as

Le−2/3

cp
hfg

∣∣∣∣
Twet-bulb

Bm,H2O = Te − Twet-bulb (11.122)

This expression can be solved iteratively with a steam table to obtain
the wet-bulb temperature as a function of the dry-bulb temperature,
Te, and the humidity of the air, mH2O,e. The psychrometric charts
found in engineering handbooks and thermodynamics texts may be
generated in this way. We ask the reader to make such calculations
in Problem 11.48.

The wet-bulb temperature is a helpful concept in many phase-change
processes. When a body (without internal heat sources) evaporates or
sublimes, it approaches a “wet-bulb” temperature at which convective
heating is balanced by latent heat removal; and it will stay at that tem-
perature until the phase-change process is complete. Thus, the wet-bulb
temperature appears in the evaporation of water droplets, the sublima-
tion of dry ice, the combustion of fuel sprays, and so on.

Thermal radiation and chemical reactions

If significant thermal radiation falls on the surface through which mass
is transferred, the energy balances must account for this additional heat
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flux. For example, suppose that thermal radiation were present during
transpiration cooling. Radiant heat flux, qrad,e, originating above the e-
surface would be absorbed below the u-surface.10 Thus, eqn. (11.108)
becomes

ni,rhi,r = ni,uhi,u − qu −αqrad,e (11.123)

while eqn. (11.109) is unchanged. Similarly, thermal radiation emitted by
the wall is taken to originate below the u-surface, so eqn. (11.123) is now

ni,rhi,r = ni,uhi,u − qu −αqrad,e + qrad,u (11.124)

or, since reflected radiation has little effect on the balance,

ni,rhi,r = ni,uhi,u − qu − (H − B) (11.125)

for an opaque surface (where H and B are defined in Section 10.4).
The heat and mass transfer analyses in this section and Section 11.7

require that the transferred species undergo no homogeneous reactions.
If the species do enter into reactions in the medium through which they
are transferred, the mass balances of Section 11.7 are invalid, because
the mass flux of a reacting species will vary across the region of reaction.
Likewise, the energy balance of this section will fail because it does not
include the heat of reaction. The energy analysis may be correctly stated
by leaving eqn. (11.102) in terms of enthalpy and including each species
transferred in the reacting medium. Correction of the mass transfer anal-
ysis is far more involved.

For heterogeneous reactions, the complications are not so severe. Re-
actions at the boundaries require that we incorporate the heat of reac-
tion released between the s- and u-surfaces and the proper stoichiome-
try of the fluxes to and from the surface. The heat transfer coefficient
[eqn. (11.107)] must also be modified to account for the transfer of more
than one species. All of these considerations become important in the
study of combustion, which is another intriguing arena of mass transfer
theory.

10Remember that the s- and u-surfaces are fictitious elements of the enthalpy bal-
ances at the phase interface. The apparent space between them need be only a few
molecules thick. Thermal radiation is therefore absorbed below the u-surface.
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Problems

11.1 Derive: (a) eqns. (11.8); (b) eqns. (11.9).

11.2 A 1000 liter cylinder at 300 K contains a gaseous mixture com-
posed of 0.10 kmol of NH3, 0.04 kmol of CO2, and 0.06 kmol of
He. (a) Find the mass fraction for each species and the pressure
in the cylinder. (b) After the cylinder is heated to 600 K, what
are the new mole fractions, mass fractions, and molar concen-
trations? (c) The cylinder is now compressed isothermally to a
volume of 600 liters. What are the molar concentrations, mass
fractions, and partial densities? (d) If 0.40 kg of gaseous N2

is injected into the cylinder while the temperature remains at
600 K, find the mole fractions, mass fractions, and molar con-
centrations. [(a) mCO2 = 0.475; (c) cCO2 = 0.0667 kmol/m3;
(d) xCO2 = 0.187.]

11.3 Planetary atmospheres show significant variations of tempera-
ture and pressure in the vertical direction. Observations sug-
gest that the atmosphere of Jupiter has the following compo-
sition at the tropopause level:

number density of H2 = 5.7× 1021 (molecules/m3)

number density of He = 7.2× 1020 (molecules/m3)

number density of CH4 = 6.5× 1018 (molecules/m3)

number density of NH3 = 1.3× 1018 (molecules/m3)

Find the mole fraction and partial density of each species at
this level if p = 0.1 atm and T = 113 K. Estimate the num-
ber densities at the level where p = 10 atm and T = 400 K,
deeper within the Jovian troposphere. (Deeper in the Jupiter’s
atmosphere, the pressure may exceed 105 atm.)

11.4 Using the definitions of the fluxes, velocities, and concentra-
tions, derive eqn. (11.35) from eqn. (11.28) for binary diffusion.

11.5 Show that D12 = D21 in a binary mixture.

11.6 Fill in the details involved in obtaining eqn. (11.32) from eqn. (11.31).

11.7 Batteries commonly contain an aqueous solution of sulfuric
acid with lead plates as electrodes. Current is generated by
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the reaction of the electrolyte with the electrode material. At
the negative electrode, the reaction is

Pb(s)+ SO2−
4 � PbSO4(s)+ 2e−

where the (s) denotes a solid phase component and the charge
of an electron is −1.609× 10−19 coulombs. If the current den-
sity at such an electrode is J = 5 milliamperes/cm2, what is
the mole flux of SO2−

4 to the electrode? (1 amp =1 coulomb/s.)
What is the mass flux of SO2−

4 ? At what mass rate is PbSO4

produced? If the electrolyte is to remain electrically neutral,
at what rate does H+ flow toward the electrode? Hydrogen
does not react at the negative electrode. [ṁ′′

PbSO4
= 7.83 ×

10−5 kg/m2·s.]

11.8 The salt concentration in the ocean increases with increasing
depth, z. A model for the concentration distribution in the
upper ocean is

S = 33.25+ 0.75 tanh(0.026z − 3.7)

where S is the salinity in grams of salt per kilogram of ocean
water and z is the distance below the surface in meters. (a) Plot
the mass fraction of salt as a function of z. (The region of rapid
transition of msalt(z) is called the halocline.) (b) Ignoring the
effects of waves or currents, compute jsalt(z). Use a value of
Dsalt,water = 1.5 × 10−5 cm2/s. Indicate the position of maxi-
mum diffusion on your plot of the salt concentration. (c) The
upper region of the ocean is well mixed by wind-driven waves
and turbulence, while the lower region and halocline tend to
be calmer. Using jsalt(z) from part (b), make a simple estimate
of the amount of salt carried upward in one week in a 5 km2

horizontal area of the sea.

11.9 In catalysis, one gaseous species reacts with another on a pas-
sive surface (the catalyst) to form a gaseous product. For ex-
ample, butane reacts with hydrogen on the surface of a nickel
catalyst to form methane and propane. This heterogeneous
reaction, referred to as hydrogenolysis, is

C4H10 +H2
Ni
�→ C3H8 + CH4
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The molar rate of consumption of C4H10 per unit area in the
reaction is ṘC4H10 = A(e−∆E/R◦T )pC4H10p

−2.4
H2

, where A = 6.3 ×
1010 kmol/m2·s, ∆E = 1.9 × 108 J/kmol, and p is in atm.
(a) If pC4H10,s = pC3H8,s = 0.2 atm, pCH4,s = 0.17 atm, and
pH2,s = 0.3 atm at a nickel surface with conditions of 440◦C
and 0.87 atm total pressure, what is the rate of consumption
of butane? (b) What are the mole fluxes of butane and hydrogen
to the surface? What are the mass fluxes of propane and ethane
away from the surface? (c) What is ṁ′′? What are v , v∗, and
vC4H10? (d) What is the diffusional mole flux of butane? What
is the diffusional mass flux of propane? What is the flux of Ni?
[(b) nCH4,s = 0.0441 kg/m2·s; (d) jC3H8 = 0.121 kg/m2·s.]

11.10 Consider two chambers held at temperatures T1 and T2, respec-
tively, and joined by a small insulated tube. The chambers are
filled with a binary gas mixture, with the tube open, and al-
lowed to come to steady state. If the Soret effect is taken into
account, what is the concentration difference between the two
chambers? Assume that an effective mean value of the thermal
diffusion ratio is known.

11.11 Compute D12 for oxygen gas diffusing through nitrogen gas at
p = 1 atm, using eqns. (11.39) and (11.42), for T = 200 K, 500 K,
and 1000 K. Observe that eqn. (11.39) shows large deviations
from eqn. (11.42), even for such simple and similar molecules.

11.12 (a) Compute the binary diffusivity of each of the noble gases
when they are individually mixed with nitrogen gas at 1 atm
and 300 K. Plot the results as a function of the molecular weight
of the noble gas. What do you conclude? (b) Consider the addi-
tion of a small amount of helium (xHe = 0.04) to a mixture of
nitrogen (xN2 = 0.48) and argon (xAr = 0.48). ComputeDHe,m
and compare it with DAr,m. Note that the higher concentration
of argon does not improve its ability to diffuse through the
mixture.

11.13 (a) One particular correlation shows that gas phase diffusion
coefficients vary as T 1.81 and p−1. If an experimental value of
D12 is known at T1 and p1, develop an equation to predict D12

at T2 and p2. (b) The diffusivity of water vapor (1) in air (2) was
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measured to be 2.39× 10−5 m2/s at 8◦C and 1 atm. Provide a
formula for D12(T ,p).

11.14 Kinetic arguments lead to the Stefan-Maxwell equation for a
dilute-gas mixture:

∇xi =
n∑
j=1

cicj
c2Dij


 �J∗j
cj
−
�J∗i
ci




(a) Derive eqn. (11.44) from this, making the appropriate as-
sumptions. (b) Show that if Dij has the same value for each
pair of species, then Dim = Dij .

11.15 Compute the diffusivity of methane in air using (a) eqn. (11.42)
and (b) Blanc’s law. For part (b), treat air as a mixture of oxygen
and nitrogen, ignoring argon. Let xmethane = 0.05, T = 420◦F,
and p = 10 psia. [(a)DCH4,air = 7.66×10−5 m2/s; (b)DCH4,air =
8.13× 10−5 m2/s.]

11.16 Diffusion of solutes in liquids is driven by the chemical poten-
tial, µ. Work is required to move a mole of solute A from a
region of low chemical potential to a region of high chemical
potential; that is,

dW = dµA = dµA
dx

dx

under isothermal, isobaric conditions. For an ideal (very dilute)
solute, µA is given by

µA = µ0 + R◦T ln(cA)

where µ0 is a constant. Using an elementary principle of me-
chanics, derive the Nernst-Einstein equation. Note that the so-
lution must be assumed to be very dilute.

11.17 A dilute aqueous solution at 300 K contains potassium ions,
K+. If the velocity of aqueous K+ ions is 6.61 × 10−4 cm2/s·V
per unit electric field (1 V/cm), estimate the effective radius of
K+ ions in an aqueous solution. Criticize this estimate. (The
charge of an electron is −1.609 × 10−19 coulomb and a volt =
1J/coulomb.)
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11.18 (a) Obtain diffusion coefficients for: (1) dilute CCl4 diffusing
through liquid methanol at 340 K; (2) dilute benzene diffus-
ing through water at 290 K; (3) dilute ethyl alcohol diffusing
through water at 350 K; and (4) dilute acetone diffusing through
methanol at 370 K. (b) Estimate the effective radius of a methanol
molecule in a dilute aqueous solution. [(a) Dacetone,methanol =
6.8× 10−9 m2/s.]

11.19 If possible, calculate values of the viscosity, µ, for methane,
hydrogen sulfide, and nitrous oxide, under the following con-
ditions: 250 K and 1 atm, 500 K and 1 atm, 250 K and 2 atm,
250 K and 12 atm, 500 K and 12 atm.

11.20 (a) Show that k = (5/2)µcv for a monatomic gas. (b) Obtain
Eucken’s formula for the Prandtl number of a dilute gas:

Pr = 4γ
/
(9γ − 5)

(c) Recall that for an ideal gas, γ � (D + 2)/D, where D is the
number of modes of energy storage of its molecules. Obtain
an expression for Pr as a function of D and describe what it
means. (d) Use Eucken’s formula to compute Pr for gaseous
Ar, N2, and H2O. Compare the result to data in Appendix A
over the range of temperatures. Explain the results obtained
for steam as opposed to Ar and N2. (Note that for each mode
of vibration, there are two modes of energy storage but that
vibration is normally inactive until T is very high.)

11.21 A student is studying the combustion of a premixed gaseous
fuel with the following molar composition: 10.3% methane,
15.4% ethane, and 74.3% oxygen. She passes 0.006 ft3/s of the
mixture (at 70◦F and 18 psia) through a smooth 3/8 inch I.D.
tube, 47 inches long. (a) What is the pressure drop? (b) The stu-
dent’s advisor recommends preheating the fuel mixture, using
a Nichrome strip heater wrapped around the last 5 inches of the
duct. If the heater produces 0.8 W/inch, what is the wall tem-
perature at the outlet of the duct? Let cp,CH4 = 2280 J/kg·K,
γCH4 = 1.3, cp,C2H6 = 1730 J/kg·K, and γC2H6 = 1.2, and evalu-
ate the properties at the inlet conditions.

11.22 (a) Work Problem 6.36. (b) A fluid is said to be incompressible if
the density of a fluid particle does not change as it moves about
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in the flow (i.e., if Dρ/Dt = 0). Show that an incompressible
flow satisfies ∇ · �u = 0. (c) How does the condition of incom-
pressibility differ from that of “constant density”? Describe a
flow that is incompressible but that does not have “constant
density.”

11.23 Carefully derive eqns. (11.62) and (11.63). Note that ρ is not
assumed constant in eqn. (11.62).

11.24 Derive the equation of species conservation on a molar basis,
using ci rather than ρi. Also obtain an equation in ci alone,
similar to eqn. (11.63) but without the assumption of incom-
pressibility. What assumptions must be made to obtain the
latter result?

11.25 Find the following concentrations: (a) the mole fraction of air
in solution with water at 5◦C and 1 atm, exposed to air at the
same conditions, H = 4.88 × 104 atm; (b) the mole fraction of
ammonia in air above an aqueous solution, with xNH3 = 0.05
at 0.9 atm and 40◦C and H = 1522 mm Hg; (c) the mole frac-
tion of SO2 in an aqueous solution at 15◦C and 1 atm, if pSO2 =
28.0 mm Hg andH = 1.42×104 mm Hg; and (d) the partial pres-
sure of ethylene over an aqueous solution at 25◦C and 1 atm,
with xC2H4 = 1.75× 10−5 and H = 11.4× 103 atm.

11.26 Use a steam table to estimate (a) the mass fraction of water
vapor in air over water at 1 atm and 20◦C, 50◦C, 70◦C, and
90◦C; (b) the partial pressure of water over a 3 percent-by-
weight aqueous solution of HCl at 50◦C; (c) the boiling point
at 1 atm of salt water with a mass fraction mNaCl = 0.18.
[(c) TB.P. = 101.8◦C.]

11.27 A large copper fitting is plated with a layer of nickel. Suppose
that the interface conditions are such that the concentration of
nickel within the copper at the interface, mNi,u, is 0.02. The
plated fitting is to be used in a high-temperature environment.
The diffusivity of nickel in copper is

DNi,Cu =
(
1.1 cm2/s

)
exp

[
−(2.25× 108 J/kmol)

/
R◦T

]
between 620◦C and 1080◦C, where T is in K. Estimate the con-
centration of nickel at a depth of 2 mm below the surface of
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the copper after 2 years at each of the following temperatures:
650◦C, 800◦C, and 950◦C.

11.28 (a) Write eqn. (11.68a) and the b.c.’s in terms of a nondimen-
sional mass fraction, ψ, analogous to the dimensionless tem-
perature in eqn. (6.42). (b) For ν = Dim, relate ψ to the Blasius
function, f , for flow over a flat plate. (c) Note the similar roles
of Pr and Sc in the two boundary layer transport processes. In-
fer the mass concentration analog of eqn. (6.55) and sketch the
concentration and momentum b.l. profiles for Sc  1, Sc = 1,
and Sc � 1.

11.29 When Sc is large, momentum diffuses more easily than mass,
and the concentration b.l. thickness, δc , is much less than the
momentum b.l. thickness, δ. On a flat plate, the small part
of the velocity profile within the concentration b.l. is approxi-
mately u/Ue = 3y/2δ. Compute Num,x based on this velocity
profile, assuming a constant wall concentration. (Hint : Use the
mass transfer analogs of eqn. (6.47) and (6.50) and note that
qw/ρcp becomes ji,s/ρ.).

11.30 Consider a one-dimensional, binary gaseous diffusion process
in which species 1 and 2 diffuse in opposite directions along the
z-axis at equal molar rates. This process is known as equimolar
counter-diffusion. (a) What are the relations betweenN1, N2, J∗1 ,
and J∗2 ? (b) If steady state prevails and conditions are isother-
mal and isobaric, what is the concentration of species 1 as a
function of z? (c) Write the mole flux in terms of the difference
in partial pressure of species 1 between locations z1 and z2.

11.31 Consider steady mass diffusion from a small sphere. When
convection is negligible, the mass flux in the radial direction is
nr,i = jr ,i = −ρDimdmi/dr . If the concentration is mi,∞ far
from the sphere and mi,s at its surface, use a mass balance to
obtain the surface mass flux in terms of the overall concentra-
tion difference (assuming that ρDim is constant). Then apply
the definition eqns. (11.85) and (11.97) to show that Num,D = 2
for this situation.

11.32 An experimental Stefan tube is 6 cm in diameter and 30 cm
from the liquid surface to the top. It is held at 10◦C and 8.0×
104 Pa. Pure argon flows over the top and liquid CCl4 is at the



Problems 623

bottom. The pool level is maintained while 0.69 ml of liquid
CCl4 evaporates during a period of 8 hours. What is the diffu-
sivity of carbon tetrachloride in argon measured under these
conditions? The specific gravity of liquid CCl4 is 1.59 and its
vapor pressure is log10 pv = 8.004 − 1771/T , where pv is ex-
pressed in mm Hg and T in K.

11.33 Repeat the analysis given in Section 11.6 on the basis of mass
fluxes, assuming that ρDim is constant and neglecting any
buoyancy-driven convection. Obtain the analog of eqn. (11.79).

11.34 In Sections 11.5 and 11.6, it was assumed at points that cD12

or ρD12 was independent of position. (a) If the mixture compo-
sition (e.g., x1) varies in space, this assumption may be poor.
Using eqn. (11.42) and the definitions from Section 11.2, ex-
amine the composition dependence of these two groups. For
what type of mixture is ρD12 most sensitive to composition?
What does this indicate about molar versus mass-based analy-
sis? (b) How do each of these groups depend on pressure and
temperature? Is the analysis of Section 11.6 really limited to
isobaric conditions? (c) Do the Prandtl and Schmidt numbers
depend on composition, temperature, or pressure?

11.35 A Stefan tube contains liquid bromine at 320 K and 1.2 atm.
Carbon dioxide flows over the top and is also bubbled up through
the liquid at the rate of 40 ml/hr. If the distance from the liq-
uid surface to the top is 16 cm and the diameter is 3 cm, what
is the evaporation rate of Br2? (psat,Br2 = 0.680 bar at 320 K.)
[NBr2,s = 1.90× 10−6 kmol/m2·s.]

11.36 Show that gm,1 = gm,2 and Bm,1 = Bm,2 in a binary mixture.

11.37 Demonstrate that stagnant film models of the momentum and
thermal boundary layers reproduce the proper dependence of
Cf,x and Nux on Rex and Pr. Using eqns. (6.31) and (6.55) to
obtain the dependence of δ and δt on Rex and Pr, show that
stagnant film models gives eqns. (6.33) and (6.58) within a con-
stant on the order of unity. [The constants in these results
will differ from the exact results because the effective b.l. thick-
nesses of the stagnant film model are not the same as the exact
values—see eqn. (6.57).]



624 Chapter 11: An Introduction to Mass Transfer

11.38 (a) What is the largest value of the mass transfer driving force
when one species is transferred? What is the smallest value?
(b) Plot the blowing factor as a function of Bm,i for one species
transferred. Indicate on your graph the regions of blowing,
suction, and low-rate mass transfer. (c) Verify the two limits
used to show that g∗m,i = ρDim/δc .

11.39 Nitrous oxide is bled through the surface of a porous 3/8 in.
O.D. tube at 0.025 liter/s per meter of tube length. Air flows
over the tube at 25 ft/s. Both the air and the tube are at 18◦C,
and the ambient pressure is 1 atm. Estimate the mean con-
centration of N2O at the tube surface. (Hint : First estimate
the concentration using properties of pure air; then correct the
properties if necessary.)

11.40 Gases are sometimes absorbed into liquids through filmabsorb-
tion. A thin film of liquid is run down the inside of a vertical
tube through which flows the gas to be absorbed. Analyze this
process under the following assumptions: The film flow is lam-
inar and of constant thickness, δ0, with a velocity profile given
by eqn. (8.47). The gas is only slightly soluble in the liquid, so
that it does not penetrate far beyond the liquid surface and so
that liquid properties are unaffected by it. The gas concentra-
tion at the s- and u-surfaces does not vary along the length of
the tube. The inlet concentration of gas in the liquid is m1,0.
Show that the mass transfer is given by

Num,x =
(
u0x
πD12

)1/2

with u0 =
(ρf − ρg)gδ2

0

2µf

The mass transfer coefficient here is based on the concentra-
tion difference between the u-surface and the bulk liquid at
m1,0 (Hint : The small penetration assumption can be used to
reduce the species equation for the film to the diffusion equa-
tion, eqn. (11.66).)

11.41 Benzene vapor flows through a 3 cm I.D. vertical tube. A thin
film of initially pure water runs down the inside wall of the tube
at a flow rate of 0.3 liter/s. If the tube is 0.5 m long and 40◦C,
estimate the rate (in kg/s) at which benzene is absorbed into
water over the entire length of the tube. The mass fraction of
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benzene at the u-surface is 0.206. (Hint : Use the result stated
in Problem 11.40. Obtain δ0 from the results in Chapter 8.)

11.42 A certain commercial mothball consists of a 1.0 inch diame-
ter sphere of naphthalene (C10H8) that is hung by a wire in
the closet. The solid naphthalene slowly sublimates to vapor,
which drives off the moths. What is the lifetime of this mothball
in a closet with a mean temperature of 68◦F? Use the following
data:

σ = 618 Å, ε/kB = 561.5 K for C10H8,

and, for solid naphthalene,

ρC10H8 = 71.47 lbm/ft3 at 68◦F

The vapor pressure (in mm Hg) of solid naphthalene is given
approximately by log10 pv = 11.450 − 3729.3/(T K). The la-
tent heat of sublimation and evaporation rate are low enough
that the wet-bulb temperature is essentially the ambient tem-
perature. Evaluate the integral you obtain numerically.

11.43 Consider the process of catalysis as described in Problem 11.9.
The mass transfer process involved is the diffusion of the re-
actants to the surface and diffusion of products away from it.
(a) What is ṁ′′ in catalysis? (b) Reaction rates in catalysis are
of the form:

Ṙreactant = Ae−∆E/R
◦T (preactant)n(pproduct)m kmol/m2·s

for the rate of consumption of a reactant per unit surface area.
Thep’s are partial pressures andA,∆E,n, andm are constants.
Suppose that n = 1 and m = 0 for the reaction B + C �→ D.
Approximate the reaction rate, in terms of mass, as

ṙB = A′e−∆E/R
◦TρB,s kg/m2·s

and find the rate of consumption of B in terms of mB,e and the
mass transfer coefficient for the geometry in question. (c) The
ratio Da ≡ ρA′e−∆E/R◦T /g∗m is called the Damkohler number.
Explain its significance in catalysis. What features dominate
the process when Da approaches 0 or ∞? What temperature
range characterizes each?
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11.44 One typical kind of mass exchanger is a fixed-bed catalytic re-
actor. A flow chamber of length L is packed with a catalyst
bed. A gas mixture containing some species i to be consumed
by the catalytic reaction flows through the bed at a rate ṁ. The
effectiveness of such a exchanger (cf. Chapter 3) is

ε = 1− e−NTU, where NTU = gm,oaPL/ṁ

where gm,oa is the overall mass transfer coefficient for the cat-
alytic packing, P is the surface area per unit length, and ε is
defined in terms of mass fractions. In testing a 0.5 m catalytic
reactor for the removal of ethane, it is found that the ethane
concentration drops from a mass fraction of 0.36 to 0.05 at a
flow rate of 0.05 kg/s. The packing is known to have a surface
area of 11 m2. What is the exchanger effectiveness? What is
the overall mass transfer coefficient in this bed?

11.45 (a) Perform the integration to obtain eqn. (11.104). Then take
the derivative and the limit needed to get eqns. (11.105) and
(11.106). (b) What is the general form of eqn. (11.107) when
more than one species is transferred?

11.46 (a) Derive eqn. (11.117) from eqn. (11.116). (b) Suppose that
1.5 m2 of the wing of a spacecraft re-entering the earth’s atmo-
sphere is to be cooled by transpiration; 900 kg of the vehicle’s
weight is allocated for this purpose. The low-rate heat trans-
fer coefficient is about 1800 W/m2·K in the region of interest,
and the hottest portion of re-entry is expected to last 3 min-
utes. If the air behind the shock wave ahead of the wing is at
2500◦C and the reservior is at 5◦C , which of these gases—H2,
He, and N2—keeps the surface coolest? (Of course, the result
for H2 is invalidated by the fact that H2 would burn under these
conditions.)

11.47 Dry ice (solid CO2) is used to cool medical supplies transported
by a small plane to a remote village in Alaska. A roughly spher-
ical chunk of dry ice, 5 cm in diameter, falls from the plane
through air at 5◦C with a terminal velocity of 15 m/s. If steady
state is reached quickly, what are the temperature and subli-
mation rate of the dry ice? The latent heat of sublimation is
574 kJ/kg and log10 pv(mm Hg) = 9.9082 − 1367.3/T K. The
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temperature will be well below the “sublimation point” of CO2,
which is −78.6◦C at 1 atm. Use the heat transfer relation for
spheres in a laminar flow, NuD = 2+0.3 Re0.6

D Pr1/3. (Hint : first
estimate the surface temperature using properties for pure air;
then correct the properties as necessary.)

11.48 The following data were taken at a weather station over a period
of several months:

Date Tdry-bulb Twet-bulb

3/15 15.5◦C 11.0◦C
4/21 22.0 16.8
5/13 27.3 25.8
5/31 32.7 20.0
7/4 39.0 31.2

Use eqn. (11.122) to find the mass fraction of water in the air
at each date. Compare these values to values obtained using a
psychrometric chart.

11.49 Biff Harwell has taken Deb sailing. Deb, and Biff’s towel, fall
into the harbor. Biff rescues them both from a passing dolphin
and then spreads his wet towel out to dry on the fiberglas fore-
deck of the boat. The incident solar radiation is 1050 W/m2;
the ambient air is at 31◦C, with mH2O = 0.017; the wind speed
is 8 knots relative to the boat (1 knot = 1.151 mph); εtowel �
αtowel � 1; and the sky has the properties of a black body at
280 K. The towel is 3 ft long in the windward direction and 2 ft
wide. Help Biff figure out how rapidly (in kg/s) water evapo-
rates from the towel.

11.50 Steam condenses on a 25 cm high, cold vertical wall in a low-
pressure condenser unit. The wall is isothermal at 25◦C, and
the ambient pressure is 8000 Pa. Air has leaked into the unit
and has reached a mass fraction of 0.04. The steam–air mix-
ture is at 45◦C and is blown downward past the wall at 8 m/s.
(a) Estimate the rate of condensation on the wall. (Hint : The
surface of the condensate film is not at the mixture or wall
temperature.) (b) Compare the result of part (a) to condensa-
tion without air in the steam. What do you conclude?
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A. Some thermophysical properties
of selected materials

A primary source of thermophysical properties is a document in which
the experimentalist who obtained the data reports the details and results
of his or her measurements. The term secondary source generally refers
to a document, based on primary sources, that presents other peoples’
data and does so critically. This appendix is neither a primary nor a sec-
ondary source, since it has been assembled from a variety of secondary
and even tertiary sources.

We attempted to cross-check the data against different sources, and
this often led to contradictory values. Such contradictions are usually
the result of differences between the experimental samples that are re-
ported or of differences in the accuracy of experiments themselves. We
resolved such differences by judging the source, by reducing the num-
ber of significant figures to accommodate the conflict, or by omitting the
substance from the table. The resulting numbers will suffice for most
calculations. However, the reader who needs high accuracy should be
sure of the physical constitution of the material and then should seek
out one of the relevant secondary data sources.

The format of these tables is quite close to that established by R. M.
Drake, Jr., in his excellent appendix on thermophysical data [A.1]. How-
ever, although we use a few of Drake’s numbers directly in Table A.6,
many of his other values have been superseded by more recent measure-
ments. One secondary source from which many of the data here were
obtained was the Purdue University series Thermophysical Properties of
Matter [A.2]. The Purdue series is the result of an enormous property-
gathering effort carried out under the direction of Y. S. Touloukian and
several coworkers. The various volumes in the series are dated since

633
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1970, and addenda were issued throughout the following decade. In
more recent years, IUPAC, NIST, and other agencies have been developing
critically reviewed, standard reference data for various substances, some
of which are contained in [A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11].
We have taken many data for fluids from those publications. A third
secondary source that we have used is the G. E. Heat Transfer Data
Book [A.12].

Numbers that did not come directly from [A.1], [A.2], [A.12] or the
sources of standard reference data were obtained from a large variety
of manufacturers’ tables, handbooks, other textbooks, and so on. No
attempt has been made to document all these diverse sources and the
various compromises that were made in quoting them.

Table A.1 gives the density, specific heat, thermal conductivity, and
thermal diffusivity for various metallic solids. These values were ob-
tained from volumes 1 and 4 of [A.2] or from [A.3] whenever it was pos-
sible to find them there. Most thermal conductivity values in the table
have been rounded off to two significant figures. The reason is that k
is sensitive to very minor variations in physical structure that cannot be
detailed fully here. Notice, for example, the significant differences be-
tween pure silver and 99.9% pure silver, or between pure aluminum and
99% pure aluminum. Additional information on the characteristics and
use of these metals can be found in the ASM Metals Handbook [A.13].

The effect of temperature on thermal conductivity is shown for most
of the metals in Table A.1. The specific heat capacity is shown only at
20◦C. For most materials, the heat capacity is much lower at cryogenic
temperatures. For example, cp for alumimum, iron, molydenum, and ti-
tanium decreases by two orders of magnitude as temperature decreases
from 200 K to 20 K. On the other hand, for most of these metals, cp
changes more gradually for temperatures between 300 K and 800 K, vary-
ing by tens of percent to a factor of two. At still higher temperatures,
some of these metals (iron and titanium) show substantial spikes in cp,
which are associated with solid-to-solid phase transitions.

Table A.2 gives the same properties as Table A.1 (where they are avail-
able) but for nonmetallic substances. Volumes 2 and 5 of [A.2] and also
[A.3] provided many of the data here, and they revealed even greater vari-
ations in k than the metallic data did. For the various sands reported,
k varied by a factor of 500, and for the various graphites by a factor of
50, for example. The sensitivity of k to small variations in the packing of
fibrous materials or to the water content of hygroscopic materials forced
us to restrict many of the k values to a single significant figure.
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The data for polymers come mainly from their manufacturers’ data
and are substantially less reliable than, say, those given in Table A.1
for metals. The values quoted are mainly those for room temperature.
In processing operations, however, most of these materials are taken
to temperatures of several hundred degrees Celsius, at which they flow
more easily. The specific heat capacity may double from room tempera-
ture to such temperatures. These polymers are also produced in a variety
of modified forms; and in many applications they may be loaded with
significant portions of reinforcing fillers (e.g., 10 to 40% by weight glass
fiber). The fillers, in particular, can have a significant effect on thermal
properties.

Table A.3 gives ρ, cp, k, α, ν , Pr, and β for several liquids. Data for
water are from [A.7] and [A.14]; they are in agreement with IAPWS recom-
mendations through 1998. Data for ammonia are from [A.4, A.15, A.16],
data for carbon dioxide are from [A.5, A.6, A.8], and data for oxygen are
from [A.9, A.10]. Data for HFC-134a, HCFC-22, and nitrogen are from
[A.11] and [A.17]. For these liquids, ρ has uncertainties less than 0.2%,
cp has uncertainties of 1–2%, while µ and k have typical uncertainties
of 2–5%. Uncertainties may be higher near the critical point. Thermody-
namic data for methanol follow [A.18]. Data for mercury follow [A.3] and
[A.19]. Volumes 3, 6, 10, and 11 of [A.2] gave many of the other values
of cp, k, and µ = ρν , and occasional independently measured values of
α. Additional values came from [A.20]. Values of α that disagreed only
slightly with k/ρcp were allowed to stand. Densities for other substances
came from [A.20] and a variety of other sources. A few values of ρ and
cp were taken from [A.21].

Table A.5 provides thermophysical data for saturated vapors. The
sources and the uncertainties are as described for gases in the next para-
graph.

Table A.6 gives thermophysical properties for gases at 1 atmosphere
pressure. The values were drawn from a variety of sources: air data
are from [A.22, A.23], except for ρ and cp above 850 K which came
from [A.24]; argon data are from [A.25, A.26, A.27]; ammonia data were
taken from [A.4, A.15, A.16]; carbon dioxide properties are from [A.5,
A.6, A.8]; carbon monoxide properties are from [A.17]; helium data are
from [A.28, A.29, A.30]; nitrogen data came from [A.31]; oxygen data
are from [A.9, A.10]; water data were taken from [A.7] and [A.14] (in
agreement with IAPWS recommendations through 1998); and a few high-
temperature hydrogen data are from [A.20] with the remainding hydro-
gen data drawn from [A.1]. Uncertainties in these data vary among the
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gases; typically, ρ has uncertainties of 0.02–0.2%, cp has uncertainties of
0.2–2%, µ has uncertainties of 0.3–3%, and k has uncertainties of 2–5%.
The uncertainties are generally lower in the dilute gas region and higher
near the saturation line or the critical point. The values for hydrogen and
for low temperature helium have somewhat larger uncertainties.

Table A.7 lists values for some fundamental physical constants, as
given in [A.32]. Table A.8 points out physical data that are listed in other
parts of this book.
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642 Appendix A: Some thermophysical properties of selected materials

Table A.2 Properties of nonmetallic solids

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Aluminum oxide (Al2O3)
plasma sprayed coating 20 ≈ 4
polycrystalline (98% dense) 0 725 40

27 3900 779 36 1.19× 10−5

127 940 26
577 1200 10

1077 1270 6.1
1577 1350 5.6

single crystal (sapphire) 0 725 52
27 3980 779 46 1.48× 10−5

127 940 32
577 1180 13

Asbestos
Cement board 20 0.6
Fiber, densely packed 20 1930 0.8
Fiber, loosely packed 20 980 0.14

Asphalt 20–25 0.75
Beef 25 1.35× 10−7

Brick
B & W, K-28 insulating 300 0.3

1000 0.4
Cement 10 720 0.34
Common 0–1000 0.7
Chrome 100 1.9
Facing 20 1.3
Firebrick, insulating 300 2000 960 0.1 5.4× 10−8

1000 0.2
Carbon

Diamond (type IIb) 20 ≈3250 510 1350.0 8.1× 10−4

Graphites 20 ≈1730 ≈710 k varies with structure
AGOT graphite
⊥ to extrusion axis 0 141

27 1700 800 138
500 1600 59.1

‖ to extrusion axis 0 230
27 1700 800 220

500 1600 93.6
Pyrolitic graphite
⊥ to layer planes 0 10.6

27 2200 710 9.5
227 5.4

1027 1.9
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Table A.2…continued.

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Pyrolitic graphite (con’t)
‖ to layer planes 0 2230

27 2200 710 2000
227 1130

1027 400
Cardboard 0–20 790 0.14
Clay

Fireclay 500–750 1.0
Sandy clay 20 1780 0.9

Coal
Anthracite 900 ≈1500 ≈0.2
Brown coal 900 ≈0.1
Bituminous in situ ≈1300 0.5–0.7 3 to 4× 10−7

Concrete
Limestone gravel 20 1850 0.6
Portland cement 90 2300 1.7
Sand : cement (3 : 1) 230 0.1
Sand and gravel 20 1.8
Slag cement 20 0.14

Corkboard (medium ρ) 30 170 0.04
Egg white 20 1.37× 10−7

Glass
Lead 36 3040 1.2
Plate 20 2500 1.3
Pyrex (borosilicate) 60–100 2210 753 1.3 7.8× 10−7

Soda 20 2590 0.7
Window 46 2490 1.3

Glass wool 20 64–160 0.04
Ice 0 917 2100 2.215 1.15× 10−6

Ivory 80 0.5
Kapok 30 0.035
Lunar surface dust 250 1500±300 ≈600 ≈0.0006 ≈7× 10−10

(high vacuum)
Magnesia (85%) 38 0.067

93 0.071
150 0.074
204 0.08

Magnesium oxide
polycrystalline (98% dense) 27 3500 900 48 1.5× 10−5

single crystal 27 3580 900 60 1.9× 10−5
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Table A.2…continued.

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Polymers
acrylic (PMMA, Plexiglas) 25 1180 0.17
acrylonitrile butadiene

styrene (ABS) 1060 0.14–0.31
epoxy,

bisphenol A (EP), cast 1150 0.17–0.52
epoxy/glass-cloth

laminate (G-10, FR4) 1800 ≈1600 0.29 ≈1.0× 10−7

polyethylene (PE)
HDPE 960 2260 0.33 1.5× 10−7

LDPE 920 ≈2100 0.33 ≈1.7× 10−7

polypropylene (PP) 905 1900 0.17–0.20
polystyrene (PS) 1040 ≈ 1350 0.10–0.16
polyvinylchloride (PVC) ≈1450 0.12–0.17
polytetrafluoroethylene

(PTFE, Teflon) ≈2200 1050 0.24 ≈1.0× 10−7

acetyl (POM, Delrin) −18–100 1420 1470 0.30–0.37
polyamide (PA)

nylon 6,6 0–49 1120 1470 0.25 1.5× 10−7

nylon 6,12 0–49 1060 1680 0.22 1.2× 10−7

polycarbonate
(PC, Lexan) 23 1200 1250 0.29 1.9× 10−7

polyimide (PI) 1430 1130 0.35 2.2× 10−7

Rock wool −5 ≈130 0.03
93 0.05

Rubber (hard) 0 1200 2010 0.15 6.2× 10−8

Silica aerogel 0 140 0.024
120 136 0.022

Silo-cel (diatomaceous earth) 0 320 0.061
Silicon dioxide

Fused silica glass
0 703 1.33

27 2200 745 1.38 8.4× 10−7

227 988 1.62
Single crystal (quartz)
⊥ to c-axis 0 709 6.84

27 2640 743 6.21
227 989 3.88

‖ to c-axis 0 709 11.6
27 2640 743 10.8

227 989 6.00
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Table A.2…continued.

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Soil (mineral)
Dry 15 1500 1840 1. 4× 10−7

Wet 15 1930 2.
Stone

Granite (NTS) 20 ≈2640 ≈820 1.6 ≈7.4× 10−7

Limestone (Indiana) 100 2300 ≈900 1.1 ≈5.3× 10−7

Sandstone (Berea) 25 ≈3
Slate 100 1.5

Wood (perpendicular to grain)
Ash 15 740 0.15–0.3
Balsa 15 100 0.05
Cedar 15 480 0.11
Fir 15 600 2720 0.12 7.4× 10−8

Mahogany 20 700 0.16
Oak 20 600 2390 0.1–0.4
Pitch pine 20 450 0.14
Sawdust (dry) 17 128 0.05
Sawdust (dry) 17 224 0.07
Spruce 20 410 0.11

Wool (sheep) 20 145 0.05
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Table A.3 Thermophysical properties of saturated liquids

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Ammonia

200 −73 728 4227 0.803 2.61× 10−7 6.967×10−7 2.67 0.00147

220 −53 706 4342 0.733 2.39 4.912 2.05 0.00165

240 −33 682 4488 0.665 2.19 3.738 1.70 0.00182

260 −13 656 4548 0.600 2.01 3.007 1.50 0.00201

280 7 629 4656 0.539 1.84 2.514 1.37 0.00225

300 27 600 4800 0.480 1.67 2.156 1.29 0.00258

320 47 568 5018 0.425 1.49 1.882 1.26 0.00306

340 67 532 5385 0.372 1.30 1.663 1.28 0.00387

360 87 490 6082 0.319 1.07 1.485 1.39 0.00542

380 107 436 7818 0.267 0.782 1.337 1.71 0.00952

400 127 345 22728 0.216 0.276 1.214 4.40 0.04862

Carbon dioxide

220 −53 1166 1962 0.176 7.70× 10−8 2.075×10−7 2.70 0.00318

230 −43 1129 1997 0.163 7.24 1.809 2.50 0.00350

240 −33 1089 2051 0.151 6.75 1.588 2.35 0.00392

250 −23 1046 2132 0.139 6.21 1.402 2.26 0.00451

260 −13 999 2255 0.127 5.61 1.245 2.22 0.00538

270 −3 946 2453 0.115 4.92 1.110 2.26 0.00677

280 7 884 2814 0.102 4.10 0.993 2.42 0.00934

290 17 805 3676 0.0895 3.03 0.887 2.93 0.0157

300 27 679 8698 0.0806 1.36 0.782 5.73 0.0570

302 29 634 15787 0.0845 0.844 0.756 8.96 0.119

Freon 12 (dichlorodifluoromethane)

180 −93 1664 834 0.124 8.935×10−8

200 −73 1610 856 0.1148 8.33

220 −53 1555 873 0.1057 7.79 3.2× 10−7 4.11 0.00263

240 −33 1498 892 0.0965 7.22 2.60 3.60

260 −13 1438 914 0.0874 6.65 2.26 3.40

280 7 1374 942 0.0782 6.04 2.06 3.41

300 27 1305 980 0.0690 5.39 1.95 3.62

320 47 1229 1031 0.0599 4.72 1.9 4.03

340 67 1097 0.0507
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Glycerin (or glycerol)

273 0 1276 2200 0.282 1.00× 10−7 0.0083 83,000

293 20 1261 2350 0.285 0.962 0.001120 11,630 0.00048

303 30 1255 2400 0.285 0.946 0.000488 5,161 0.00049

313 40 1249 2460 0.285 0.928 0.000227 2,451 0.00049

323 50 1243 2520 0.285 0.910 0.000114 1,254 0.00050

20% glycerin, 80% water

293 20 1047 3860 0.519 1.28× 10−7 1.681×10−6 13.1 0.00031

303 30 1043 3860 0.532 1.32 1.294 9.8 0.00036

313 40 1039 3915 0.540 1.33 1.030 7.7 0.00041

323 50 1035 3970 0.553 1.35 0.849 6.3 0.00046

40% glycerin, 60% water

293 20 1099 3480 0.448 1.20× 10−7 3.385×10−6 28.9 0.00041

303 30 1095 3480 0.452 1.22 2.484 20.4 0.00045

313 40 1090 3570 0.461 1.18 1.900 16.1 0.00048

323 50 1085 3620 0.469 1.19 1.493 12.5 0.00051

60% glycerin, 40% water

293 20 1154 3180 0.381 1.04× 10−7 9.36×10−6 90.0 0.00048

303 30 1148 3180 0.381 1.04 6.89 66.3 0.00050

313 40 1143 3240 0.385 1.04 4.44 42.7 0.00052

323 50 1137 3300 0.389 1.04 3.31 31.8 0.00053

80% glycerin, 20% water

293 20 1209 2730 0.327 0.99× 10−7 4.97×10−5 502 0.00051

303 30 1203 2750 0.327 0.99 2.82 282 0.00052

313 40 1197 2800 0.327 0.98 1.74 178 0.00053

323 50 1191 2860 0.331 0.97 1.14 118 0.00053

Helium I and Helium II

• k for He I is about 0.020 W/m·K near the λ-transition (≈ 2.17 K).
• k for He II below the λ-transition is hard to measure. It appears to be about
80,000 W/m·K between 1.4 and 1.75 K and it might go as high as 340,000 W/m·K at
1.92 K. These are the highest conductivities known (cf. copper, silver, and diamond).
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

HCFC-22 (R22)

160 −113 1605 1061 0.1504 8.82× 10−8 7.10×10−7 8.05 0.00163

180 −93 1553 1061 0.1395 8.46 4.77 5.63 0.00170

200 −73 1499 1064 0.1291 8.09 3.55 4.38 0.00181

220 −53 1444 1076 0.1193 7.67 2.79 3.64 0.00196

240 −33 1386 1100 0.1099 7.21 2.28 3.16 0.00216

260 −13 1324 1136 0.1008 6.69 1.90 2.84 0.00245

280 7 1257 1189 0.0918 6.14 1.61 2.62 0.00286

300 27 1183 1265 0.0828 5.53 1.37 2.48 0.00351

320 47 1097 1390 0.0737 4.83 1.17 2.42 0.00469

340 67 990.1 1665 0.0644 3.91 0.981 2.51 0.00756

360 87 823.4 3001 0.0575 2.33 0.786 3.38 0.02388

Heavy water (D2O)

589 316 740 2034 0.0509 0.978×10−7 1.23×10−7 1.257

HFC-134a (R134a)

180 −93 1564 1187 0.1391 7.49× 10−8 9.45×10−7 12.62 0.00170

200 −73 1510 1205 0.1277 7.01 5.74 8.18 0.00180

220 −53 1455 1233 0.1172 6.53 4.03 6.17 0.00193

240 −33 1397 1266 0.1073 6.06 3.05 5.03 0.00211

260 −13 1337 1308 0.0979 5.60 2.41 4.30 0.00236

280 7 1271 1360 0.0890 5.14 1.95 3.80 0.00273

300 27 1199 1432 0.0803 4.67 1.61 3.45 0.00330

320 47 1116 1542 0.0718 4.17 1.34 3.21 0.00433

340 67 1015 1750 0.0631 3.55 1.10 3.11 0.00657

360 87 870.1 2436 0.0541 2.55 0.883 3.46 0.0154

Lead

644 371 10,540 159 16.1 1.084×10−5 2.276×10−7 0.024

755 482 10,442 155 15.6 1.223 1.85 0.017

811 538 10,348 145 15.3 1.02 1.68 0.017
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Mercury

234 −39 141.5 6.97 3.62× 10−6 1.5× 10−7 0.041

250 −23 140.5 7.32 3.83 1.4 0.037

300 27 13,529 139.3 8.34 4.43 1.1 0.025 0.000181

350 77 13,407 137.7 9.15 4.96 0.98 0.020 0.000181

400 127 13,286 136.6 9.84 5.42 0.88 0.016 0.000181

500 227 13,048 135.3 11.0 6.23 0.73 0.012 0.000183

600 327 12,809 135.5 12.0 6.91 0.71 0.010 0.000187

700 427 12,567 136.9 12.7 7.38 0.67 0.0091 0.000195

800 527 12,318 139.8 12.8 7.43 0.64 0.0086 0.000207

Methyl alcohol (methanol)

260 −13 823 2336 0.2164 1.126×10−7 ≈ 1.3× 10−6 ≈ 11.5 0.00113

280 7 804 2423 0.2078 1.021 ≈ 0.9 ≈ 8.8 0.00119

300 27 785 2534 0.2022 1.016 ≈ 0.7 ≈ 6.9 0.00120

320 47 767 2672 0.1965 0.959 ≈ 0.6 ≈ 6.3 0.00123

340 67 748 2856 0.1908 0.893 ≈ 0.44 ≈ 4.9 0.00135

360 87 729 3036 0.1851 0.836 ≈ 0.36 ≈ 4.3 0.00144

380 107 710 3265 0.1794 0.774 ≈ 0.30 ≈ 4.1 0.00164

NaK (eutectic mixture of sodium and potassium)

366 93 849 946 24.4 3.05× 10−5 5.8× 10−7 0.019

672 399 775 879 26.7 3.92 2.67 0.0068

811 538 743 872 27.7 4.27 2.24 0.0053

1033 760 690 883 2.12

Nitrogen

70 −203 838.5 2014 0.162 9.58× 10−8 2.62×10−7 2.74 0.00513

77 −196 807.7 2040 0.147 8.90 2.02 2.27 0.00564

80 −193 793.9 2055 0.140 8.59 1.83 2.13 0.00591

90 −183 745.0 2140 0.120 7.52 1.38 1.83 0.00711

100 −173 689.4 2318 0.101 6.29 1.09 1.74 0.00927

110 −163 621.5 2743 0.0818 4.80 0.894 1.86 0.0142

120 −153 523.4 4507 0.0633 2.68 0.730 2.72 0.0359
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Oils (some approximate viscosities)

273 0 MS-20 0.0076 100,000

339 66 California crude (heavy) 0.00008

289 16 California crude (light) 0.00005

339 66 California crude (light) 0.000010

289 16 Light machine oil (ρ = 907) 0.00016

339 66 Light machine oil (ρ = 907) 0.000013

289 16 SAE 30 0.00044 ≈ 5,000

339 66 SAE 30 0.00003

289 16 SAE 30 (Eastern) 0.00011

339 66 SAE 30 (Eastern) 0.00001

289 16 Spindle oil (ρ = 885) 0.00005

339 66 Spindle oil (ρ = 885) 0.000007

Oxygen

60 −213 1282 1673 0.195 9.09× 10−8 4.50×10−7 4.94 0.00343

70 −203 1237 1678 0.181 8.72 2.84 3.26 0.00370

80 −193 1190 1682 0.167 8.33 2.08 2.49 0.00398

90 −183 1142 1699 0.153 7.88 1.63 2.07 0.00436

100 −173 1091 1738 0.139 7.33 1.34 1.83 0.00492

110 −163 1036 1807 0.125 6.67 1.13 1.70 0.00575

120 −153 973.9 1927 0.111 5.89 0.974 1.65 0.00708

130 −143 902.5 2153 0.0960 4.94 0.848 1.72 0.00953

140 −133 813.2 2691 0.0806 3.67 0.741 2.01 0.0155

150 −123 675.5 5464 0.0643 1.74 0.639 3.67 0.0495
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Water

273.16 0.01 999.8 4220 0.5610 1.330×10−7 17.91×10−7 13.47 −6.80× 10−5

275 2 999.9 4214 0.5645 1.340 16.82 12.55 −3.55× 10−5

280 7 999.9 4201 0.5740 1.366 14.34 10.63 4.36× 10−5

285 12 999.5 4193 0.5835 1.392 12.40 8.91 0.000112

290 17 998.8 4187 0.5927 1.417 10.85 7.66 0.000172

295 22 997.8 4183 0.6017 1.442 9.600 6.66 0.000226

300 27 996.5 4181 0.6103 1.465 8.568 5.85 0.000275

305 32 995.0 4180 0.6184 1.487 7.708 5.18 0.000319

310 37 993.3 4179 0.6260 1.508 6.982 4.63 0.000361

320 47 989.3 4181 0.6396 1.546 5.832 3.77 0.000436

340 67 979.5 4189 0.6605 1.610 4.308 2.68 0.000565

360 87 967.4 4202 0.6737 1.657 3.371 2.03 0.000679

373.15 100.0 958.3 4216 0.6791 1.681 2.940 1.75 0.000751

400 127 937.5 4256 0.6836 1.713 2.332 1.36 0.000895

420 147 919.9 4299 0.6825 1.726 2.030 1.18 0.001008

440 167 900.5 4357 0.6780 1.728 1.808 1.05 0.001132

460 187 879.5 4433 0.6702 1.719 1.641 0.955 0.001273

480 207 856.5 4533 0.6590 1.697 1.514 0.892 0.001440

500 227 831.3 4664 0.6439 1.660 1.416 0.853 0.001645

520 247 803.6 4838 0.6246 1.607 1.339 0.833 0.001909

540 267 772.8 5077 0.6001 1.530 1.278 0.835 0.002266

560 287 738.0 5423 0.5701 1.425 1.231 0.864 0.002783

580 307 697.6 5969 0.5346 1.284 1.195 0.931 0.003607

600 327 649.4 6953 0.4953 1.097 1.166 1.06 0.005141

620 347 586.9 9354 0.4541 0.8272 1.146 1.39 0.009092

640 367 481.5 25,940 0.4149 0.3322 1.148 3.46 0.03971

642 369 463.7 34,930 0.4180 0.2581 1.151 4.46 0.05679

644 371 440.7 58,910 0.4357 0.1678 1.156 6.89 0.1030

646 373 403.0 204,600 0.5280 0.06404 1.192 18.6 0.3952

647.0 374 357.3 3,905,000 1.323 0.00948 1.313 138. 7.735
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Table A.4 Some latent heats of vaporization, hfg (kJ/kg)

T(K) Water Ammonia CO2 HCFC-22 HFC-134a Mercury Methanol Nitrogen Oxygen

60 238.4

70 208.1 230.5

80 195.7 222.3

90 180.5 213.2

100 161.0 202.6

110 134.3 189.7

120 300.4 92.0 173.7

130 294.0 153.1

140 287.9 125.2

150 281.8 79.2

160 275.9
180 264.3 257.4
200 1474 252.9 245.7 1310

220 1424 344.9 241.3 233.9 1269

230 1397 328.0 235.2 227.8 1258

240 1369 309.6 228.9 221.5 1247

250 1339 289.3 222.2 215.0 1235

260 1307 266.5 215.1 208.2 1222

270 1273 240.1 207.5 201.0 1209

273 2501 1263 230.9 205.0 198.6 306.8 1205

280 2485 1237 208.6 199.4 193.3 306.6 1196

290 2462 1199 168.1 190.5 185.0 306.2 1181

300 2438 1158 103.7 180.9 176.1 305.8 1166

310 2414 1114 170.2 166.3 305.5 1168

320 2390 1066 158.3 155.5 305.1 1150

330 2365 1015 144.7 143.3 304.8 1116

340 2341 957.9 128.7 129.3 304.4 1096

350 2315 895.2 109.0 112.5 304.1 1078

360 2290 824.8 81.8 91.0 303.8 1054

373 2257 717.0 303.3 1022

400 2183 346.9 302.4 945

500 1828 299.2 391

600 1173 295.9
700 292.3
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Table A.5 Thermophysical properties of saturated vapors (p ≠ 1 atm).

T (K) p (MPa) ρ (kg/m3) cp (J/kg·K) k (W/m·K) µ (kg/m·s) Pr β(K−1)

Ammonia

200 0.008651 0.08908 2076 0.0197 6.952×10−6 0.733 0.005141

220 0.03379 0.3188 2160 0.0201 7.485 0.803 0.004847

240 0.1022 0.8969 2298 0.0210 8.059 0.883 0.004724

260 0.2553 2.115 2503 0.0223 8.656 0.973 0.004781

280 0.5509 4.382 2788 0.0240 9.266 1.08 0.005042

300 1.062 8.251 3177 0.0264 9.894 1.19 0.005560

320 1.873 14.51 3718 0.0296 10.56 1.33 0.006462

340 3.080 24.40 4530 0.0339 11.33 1.51 0.008053

360 4.793 40.19 5955 0.0408 12.35 1.80 0.01121

380 7.140 67.37 9395 0.0546 14.02 2.42 0.01957

400 10.30 131.1 34924 0.114 18.53 5.70 0.08664

Carbon dioxide

220 0.5991 15.82 930.3 0.0113 1.114×10−5 0.917 0.006223

230 0.8929 23.27 1005. 0.0122 1.169 0.962 0.006615

240 1.283 33.30 1103. 0.0133 1.227 1.02 0.007223

250 1.785 46.64 1237. 0.0146 1.290 1.09 0.008154

260 2.419 64.42 1430. 0.0163 1.361 1.19 0.009611

270 3.203 88.37 1731. 0.0187 1.447 1.34 0.01203

280 4.161 121.7 2277. 0.0225 1.560 1.58 0.01662

290 5.318 172.0 3614. 0.0298 1.736 2.10 0.02811

300 6.713 268.6 11921. 0.0537 2.131 4.73 0.09949

302 7.027 308.2 23800. 0.0710 2.321 7.78 0.2010

HCFC-22 (R22)

160 0.0005236 0.03406 479.2 0.00398 6.69× 10−6 0.807 0.006266

180 0.003701 0.2145 507.1 0.00472 7.54 0.810 0.005622

200 0.01667 0.8752 539.1 0.00554 8.39 0.816 0.005185

220 0.05473 2.649 577.8 0.00644 9.23 0.828 0.004947

240 0.1432 6.501 626.2 0.00744 10.1 0.847 0.004919

260 0.3169 13.76 688.0 0.00858 10.9 0.877 0.005131

280 0.6186 26.23 769.8 0.00990 11.8 0.918 0.005661

300 1.097 46.54 885.1 0.0116 12.8 0.977 0.006704

320 1.806 79.19 1071. 0.0140 14.0 1.07 0.008801

340 2.808 133.9 1470. 0.0181 15.7 1.27 0.01402

360 4.184 246.7 3469. 0.0298 19.3 2.24 0.04233
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Table A.5: saturated vapors (p ≠ 1 atm)…continued.

T (K) p (MPa) ρ (kg/m3) cp (J/kg·K) k (W/m·K) µ (kg/m·s) Pr β(K−1)

HFC-134a (R134a)

180 0.001128 0.07702 609.7 0.00389 6.90× 10−6 1.08 0.005617

200 0.006313 0.3898 658.6 0.00550 7.75 0.929 0.005150

220 0.02443 1.385 710.9 0.00711 8.59 0.859 0.004870

240 0.07248 3.837 770.5 0.00873 9.40 0.829 0.004796

260 0.1768 8.905 841.8 0.0104 10.2 0.826 0.004959

280 0.3727 18.23 929.6 0.0121 11.0 0.845 0.005421

300 0.7028 34.19 1044. 0.0140 11.9 0.886 0.006335

320 1.217 60.71 1211. 0.0163 12.9 0.961 0.008126

340 1.972 105.7 1524. 0.0197 14.4 1.11 0.01227

360 3.040 193.6 2606. 0.0274 17.0 1.62 0.02863

Nitrogen

70 0.03854 1.896 1082. 0.00680 4.88× 10−6 0.776 0.01525

77 0.09715 4.437 1121. 0.00747 5.41 0.812 0.01475

80 0.1369 6.089 1145. 0.00778 5.64 0.830 0.01472

90 0.3605 15.08 1266. 0.00902 6.46 0.906 0.01553

100 0.7783 31.96 1503. 0.0109 7.39 1.02 0.01842

110 1.466 62.58 2062. 0.0144 8.58 1.23 0.02646

120 2.511 125.1 4631. 0.0235 10.6 2.09 0.06454

Oxygen

60 0.0007258 0.04659 947.5 0.00486 3.89× 10−6 0.757 0.01688

70 0.006262 0.3457 978.0 0.00598 4.78 0.781 0.01471

80 0.03012 1.468 974.3 0.00711 5.66 0.776 0.01314

90 0.09935 4.387 970.5 0.00826 6.54 0.769 0.01223

100 0.2540 10.42 1006. 0.00949 7.44 0.789 0.01207

110 0.5434 21.28 1101. 0.0109 8.36 0.847 0.01277

120 1.022 39.31 1276. 0.0126 9.35 0.951 0.01462

130 1.749 68.37 1600. 0.0149 10.5 1.13 0.01868

140 2.788 116.8 2370. 0.0190 12.1 1.51 0.02919

150 4.219 214.9 6625. 0.0318 15.2 3.17 0.08865
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Table A.5: saturated vapors (p ≠ 1 atm)…continued.

T (K) p (MPa) ρ (kg/m3) cp (J/kg·K) k (W/m·K) µ (kg/m·s) Pr β(K−1)

Water vapor

273.16 0.0006177 0.004855 1884 0.01707 0.9216×10−5 1.02 0.003681

275.0 0.0006985 0.005507 1886 0.01717 0.9260 1.02 0.003657

280.0 0.0009918 0.007681 1891 0.01744 0.9382 1.02 0.003596

285.0 0.001389 0.01057 1897 0.01773 0.9509 1.02 0.003538

290.0 0.001920 0.01436 1902 0.01803 0.9641 1.02 0.003481

295.0 0.002621 0.01928 1908 0.01835 0.9778 1.02 0.003428

300.0 0.003537 0.02559 1914 0.01867 0.9920 1.02 0.003376

305.0 0.004719 0.03360 1920 0.01901 1.006 1.02 0.003328

310.0 0.006231 0.04366 1927 0.01937 1.021 1.02 0.003281

320.0 0.01055 0.07166 1942 0.02012 1.052 1.02 0.003195

340.0 0.02719 0.1744 1979 0.02178 1.116 1.01 0.003052

360.0 0.06219 0.3786 2033 0.02369 1.182 1.01 0.002948

373.15 0.1014 0.5982 2080 0.02510 1.227 1.02 0.002902

380.0 0.1289 0.7483 2110 0.02587 1.250 1.02 0.002887

400.0 0.2458 1.369 2218 0.02835 1.319 1.03 0.002874

420.0 0.4373 2.352 2367 0.03113 1.388 1.06 0.002914

440.0 0.7337 3.833 2560 0.03423 1.457 1.09 0.003014

460.0 1.171 5.983 2801 0.03766 1.526 1.13 0.003181

480.0 1.790 9.014 3098 0.04145 1.595 1.19 0.003428

500.0 2.639 13.20 3463 0.04567 1.665 1.26 0.003778

520.0 3.769 18.90 3926 0.05044 1.738 1.35 0.004274

540.0 5.237 26.63 4540 0.05610 1.815 1.47 0.004994

560.0 7.106 37.15 5410 0.06334 1.901 1.62 0.006091

580.0 9.448 51.74 6760 0.07372 2.002 1.84 0.007904

600.0 12.34 72.84 9181 0.09105 2.135 2.15 0.01135

620.0 15.90 106.3 14,940 0.1267 2.337 2.76 0.02000

640.0 20.27 177.1 52,590 0.2500 2.794 5.88 0.07995

642.0 20.76 191.5 737,900 0.2897 2.894 7.37 0.1144

644.0 21.26 211.0 1,253,000 0.3596 3.034 10.6 0.1988

646.0 21.77 243.5 3,852,000 0.5561 3.325 23.0 0.6329

647.0 22.04 286.5 53,340,000 1.573 3.972 135. 9.274
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Table A.6 Thermophysical properties of gases at atmospheric
pressure (101325 Pa)

T (K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Air

100 3.605 1039 0.711×10−5 0.197×10−5 0.00941 0.251× 10−5 0.784

150 2.368 1012 1.035 0.437 0.01406 0.587 0.745

200 1.769 1007 1.333 0.754 0.01836 1.031 0.731

250 1.412 1006 1.606 1.137 0.02241 1.578 0.721

260 1.358 1006 1.649 1.214 0.02329 1.705 0.712

270 1.308 1006 1.699 1.299 0.02400 1.824 0.712

280 1.261 1006 1.747 1.385 0.02473 1.879 0.711

290 1.217 1006 1.795 1.475 0.02544 2.078 0.710

300 1.177 1007 1.857 1.578 0.02623 2.213 0.713

310 1.139 1007 1.889 1.659 0.02684 2.340 0.709

320 1.103 1008 1.935 1.754 0.02753 2.476 0.708

330 1.070 1008 1.981 1.851 0.02821 2.616 0.708

340 1.038 1009 2.025 1.951 0.02888 2.821 0.707

350 1.008 1009 2.090 2.073 0.02984 2.931 0.707

400 0.8821 1014 2.310 2.619 0.03328 3.721 0.704

450 0.7840 1021 2.517 3.210 0.03656 4.567 0.703

500 0.7056 1030 2.713 3.845 0.03971 5.464 0.704

550 0.6414 1040 2.902 4.524 0.04277 6.412 0.706

600 0.5880 1051 3.082 5.242 0.04573 7.400 0.708

650 0.5427 1063 3.257 6.001 0.04863 8.430 0.712

700 0.5040 1075 3.425 6.796 0.05146 9.498 0.715

750 0.4704 1087 3.588 7.623 0.05425 10.61 0.719

800 0.4410 1099 3.747 8.497 0.05699 11.76 0.723

850 0.4150 1110 3.901 9.400 0.05969 12.96 0.725

900 0.3920 1121 4.052 10.34 0.06237 14.19 0.728

950 0.3716 1131 4.199 11.30 0.06501 15.47 0.731

1000 0.3528 1142 4.343 12.31 0.06763 16.79 0.733

1100 0.3207 1159 4.622 14.41 0.07281 19.59 0.736

1200 0.2940 1175 4.891 16.64 0.07792 22.56 0.738

1300 0.2714 1189 5.151 18.98 0.08297 25.71 0.738

1400 0.2520 1201 5.403 21.44 0.08798 29.05 0.738

1500 0.2352 1211 5.648 23.99 0.09296 32.64 0.735
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Argon

100 4.982 547.4 0.799×10−5 0.160×10−5 0.00632 0.232× 10−5 0.692

150 3.269 527.7 1.20 0.366 0.00939 0.544 0.673

200 2.441 523.7 1.59 0.652 0.01245 0.974 0.669

250 1.950 522.2 1.95 1.00 0.01527 1.50 0.668

300 1.624 521.5 2.29 1.41 0.01787 2.11 0.667

350 1.391 521.2 2.59 1.86 0.02029 2.80 0.666

400 1.217 520.9 2.88 2.37 0.02256 3.56 0.666

450 1.082 520.8 3.16 2.92 0.02470 4.39 0.666

500 0.9735 520.7 3.42 3.51 0.02675 5.28 0.666

550 0.8850 520.6 3.67 4.14 0.02870 6.23 0.665

600 0.8112 520.6 3.91 4.82 0.03057 7.24 0.665

650 0.7488 520.5 4.14 5.52 0.03238 8.31 0.665

700 0.6953 520.5 4.36 6.27 0.03412 9.43 0.665

Ammonia

240 0.8888 2296 8.06×10−6 0.907×10−5 0.0210 0.1028× 10−4 0.882

273 0.7719 2180 9.19 1.19 0.0229 0.1361 0.874

323 0.6475 2176 11.01 1.70 0.0274 0.1943 0.876

373 0.5589 2238 12.92 2.31 0.0334 0.2671 0.866

423 0.4920 2326 14.87 3.01 0.0407 0.3554 0.850

473 0.4396 2425 16.82 3.82 0.0487 0.4565 0.838

Carbon dioxide

220 2.4733 783 11.06×10−6 4.472×10−6 0.01090 0.05628×10−4 0.795

250 2.1657 804 12.57 5.804 0.01295 0.07437 0.780

300 1.7973 853 15.02 8.357 0.01677 0.1094 0.764

350 1.5362 900 17.40 11.33 0.02092 0.1513 0.749

400 1.3424 942 19.70 14.68 0.02515 0.1989 0.738

450 1.1918 980 21.88 18.36 0.02938 0.2516 0.730

500 1.0732 1013 24.02 22.38 0.03354 0.3085 0.725

550 0.9739 1047 26.05 26.75 0.03761 0.3688 0.725

600 0.8938 1076 28.00 31.33 0.04159 0.4325 0.724
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Carbon monoxide

250 1.367 1042 1.54×10−5 1.13×10−5 0.02306 1.62× 10−5 0.697

300 1.138 1040 1.77 1.56 0.02656 2.24 0.694

350 0.975 1040 1.99 2.04 0.02981 2.94 0.693

400 0.853 1039 2.19 2.56 0.03285 3.70 0.692

450 0.758 1039 2.38 3.13 0.03571 4.53 0.691

500 0.682 1040 2.55 3.74 0.03844 5.42 0.691

600 0.5687 1041 2.89 5.08 0.04357 7.36 0.690

700 0.4874 1043 3.20 6.56 0.04838 9.52 0.689

800 0.4265 1046 3.49 8.18 0.05297 11.9 0.689

900 0.3791 1049 3.77 9.94 0.05738 14.4 0.689

1000 0.3412 1052 4.04 11.8 0.06164 17.2 0.689

Helium

50 0.9732 5201 0.607×10−5 0.0624×10−4 0.0476 0.0940× 10−4 0.663

100 0.4871 5194 0.953 0.196 0.0746 0.295 0.664

150 0.3249 5193 1.25 0.385 0.0976 0.578 0.665

200 0.2437 5193 1.51 0.621 0.118 0.932 0.667

250 0.1950 5193 1.76 0.903 0.138 1.36 0.665

300 0.1625 5193 1.99 1.23 0.156 1.85 0.664

350 0.1393 5193 2.22 1.59 0.174 2.40 0.663

400 0.1219 5193 2.43 1.99 0.190 3.01 0.663

450 0.1084 5193 2.64 2.43 0.207 3.67 0.663

500 0.09753 5193 2.84 2.91 0.222 4.39 0.663

600 0.08128 5193 3.22 3.96 0.252 5.98 0.663

700 0.06967 5193 3.59 5.15 0.281 7.77 0.663

800 0.06096 5193 3.94 6.47 0.309 9.75 0.664

900 0.05419 5193 4.28 7.91 0.335 11.9 0.664

1000 0.04877 5193 4.62 9.46 0.361 14.2 0.665

1100 0.04434 5193 4.95 11.2 0.387 16.8 0.664

1200 0.04065 5193 5.27 13.0 0.412 19.5 0.664

1300 0.03752 5193 5.59 14.9 0.437 22.4 0.664

1400 0.03484 5193 5.90 16.9 0.461 25.5 0.665

1500 0.03252 5193 6.21 19.1 0.485 28.7 0.665
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Hydrogen

30 0.8472 10840 1.606×10−6 1.805×10−6 0.0228 0.0249× 10−4 0.759

50 0.5096 10501 2.516 4.880 0.0362 0.0676 0.721

100 0.2457 11229 4.212 17.14 0.0665 0.2408 0.712

150 0.1637 12602 5.595 34.18 0.0981 0.475 0.718

200 0.1227 13540 6.813 55.53 0.1282 0.772 0.719

250 0.09819 14059 7.919 80.64 0.1561 1.130 0.713

300 0.08185 14314 8.963 109.5 0.182 1.554 0.706

350 0.07016 14436 9.954 141.9 0.206 2.031 0.697

400 0.06135 14491 10.86 177.1 0.228 2.568 0.690

450 0.05462 14499 11.78 215.6 0.251 3.164 0.682

500 0.04918 14507 12.64 257.0 0.272 3.817 0.675

600 0.04085 14537 14.29 349.7 0.315 5.306 0.664

700 0.03492 14574 15.89 455.1 0.351 6.903 0.659

800 0.03060 14675 17.40 569 0.384 8.563 0.664

900 0.02723 14821 18.78 690 0.412 10.21 0.675

1000 0.02451 14968 20.16 822 0.445 12.13 0.678

1100 0.02227 15165 21.46 965 0.488 14.45 0.668

1200 0.02050 15366 22.75 1107 0.528 16.76 0.661

1300 0.01890 15575 24.08 1273 0.568 19.3 0.660

Nitrogen

100 3.484 1072 6.80×10−6 1.95×10−6 0.00988 0.0265× 10−4 0.738

200 1.711 1043 12.9 7.54 0.0187 0.105 0.720

300 1.138 1041 18.0 15.8 0.0260 0.219 0.721

400 0.8533 1044 22.2 26.0 0.0326 0.366 0.711

500 0.6826 1055 26.1 38.2 0.0388 0.539 0.709

600 0.5688 1074 29.5 51.9 0.0448 0.733 0.708

700 0.4876 1096 32.8 67.3 0.0508 0.951 0.708

800 0.4266 1120 35.8 83.9 0.0567 1.19 0.707

900 0.3792 1143 38.7 102. 0.0624 1.44 0.709

1000 0.3413 1165 41.5 122. 0.0680 1.71 0.711

1100 0.3103 1184 44.2 142. 0.0735 2.00 0.712

1200 0.2844 1201 46.7 164. 0.0788 2.31 0.712

1400 0.2438 1229 51.7 212. 0.0889 2.97 0.715

1600 0.2133 1250 56.3 264. 0.0984 3.69 0.715
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Oxygen

100 3.995 935.6 0.738×10−5 0.185×10−5 0.00930 0.249× 10−5 0.743

150 2.619 919.8 1.13 0.431 0.01415 0.587 0.733

200 1.956 914.6 1.47 0.754 0.01848 1.03 0.730

250 1.562 915.0 1.79 1.145 0.02244 1.57 0.729

300 1.301 919.9 2.07 1.595 0.02615 2.19 0.730

350 1.114 929.1 2.34 2.101 0.02974 2.87 0.731

400 0.9749 941.7 2.59 2.657 0.03324 3.62 0.734

450 0.8665 956.4 2.83 3.261 0.03670 4.43 0.737

500 0.7798 972.2 3.05 3.911 0.04010 5.29 0.739

600 0.6498 1003 3.47 5.340 0.04673 7.17 0.745

700 0.5569 1031 3.86 6.930 0.05309 9.24 0.750

800 0.4873 1054 4.23 8.673 0.05915 11.5 0.753

900 0.4332 1073 4.57 10.56 0.06493 14.0 0.757

1000 0.3899 1089 4.91 12.59 0.07046 16.6 0.759

Steam (H2O vapor)

373.15 0.5976 2080 12.28×10−6 20.55×10−6 0.02509 2.019× 10−5 1.018

393.15 0.5652 2021 13.04 23.07 0.02650 2.320 0.994

413.15 0.5365 1994 13.81 25.74 0.02805 2.622 0.982

433.15 0.5108 1980 14.59 28.56 0.02970 2.937 0.973

453.15 0.4875 1976 15.38 31.55 0.03145 3.265 0.966

473.15 0.4665 1976 16.18 34.68 0.03328 3.610 0.961

493.15 0.4472 1980 17.00 38.01 0.03519 3.974 0.956

513.15 0.4295 1986 17.81 41.47 0.03716 4.357 0.952

533.15 0.4131 1994 18.63 45.10 0.03919 4.758 0.948

553.15 0.3980 2003 19.46 48.89 0.04128 5.178 0.944

573.15 0.3840 2013 20.29 52.84 0.04341 5.616 0.941

593.15 0.3709 2023 21.12 56.94 0.04560 6.077 0.937

613.15 0.3587 2034 21.95 61.19 0.04784 6.554 0.934

673.15 0.3266 2070 24.45 74.86 0.05476 8.100 0.924

773.15 0.2842 2134 28.57 100.5 0.06698 11.04 0.910

873.15 0.2516 2203 32.62 129.7 0.07990 14.42 0.899

973.15 0.2257 2273 36.55 161.9 0.09338 18.20 0.890

1073.15 0.2046 2343 40.38 197.4 0.1073 22.38 0.882
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Table A.7 Physical constants from 1998 CODATA. The 1σ
uncertainties of the last two digits are stated in parentheses.

Avogadro’s number, NA 6.02214199 (47) ×1026 molecules/kmol

Boltzmann’s constant, kB 1.3806503 (24) ×10−23 J/K

Universal gas constant, R◦ 8314.472 (15) J/kmol·K
Speed of light in vacuum, c 299,792,458 (0) m/s

Standard acceleration of gravity, g 9.80665 (0) m/s2

Stefan-Boltzmann constant, σ 5.670400 (40) ×10−8 W/m2K4

Table A.8 Additional physical property data in the text

Page no. Data

28 Electromagnetic wave spectrum

52, 53 Additional thermal conductivities of metals, liquids, and gases

429, 430 Surface tension

490 Total emittances

565 Lennard-Jones constants and molecular weights

566 Collision integrals

572 Molal specific volumes and latent heats





B. Units and conversion factors

The reader is certainly familiar with the Système International d’ Unités
(the “S.I. System”) and will probably make primary use of it in later work.
But the need to deal with English units will remain with us for many
years to come. We therefore list some conversion factors from English
units to S.I. units in this appendix. Many more conversion factors and
an extensive discussion of the S.I. system and may be found in [B.1]. The
dimensions that are used consistently in the subject of heat transfer are
length, mass, force, energy, temperature, and time. We generally avoid
using both force and mass dimensions in the same equation, since force
is always expressible in dimensions of mass, length, and time, and vice
versa. We do not make a practice of eliminating energy in terms of force
times length because the accounting of work and heat is often kept sep-
arate in heat transfer problems. The text makes occasional reference to
electrical units; however, these are conventional and do not have coun-
terparts in the English system, so no electrical units are discussed here.

We present conversion factors in the form of multipliers that may
be applied to English units so as to obtain S.I units. For example, the
relationship between Btu and J is

1 Btu = 1055.04 J. (B.1)

Thus, a given number of Btu may be multiplied by 1055.04 to obtain the
equivalent number of joules. We denote this in our tabulation as

J = 1055.04× Btu. (B.2)

although the meaning of the multiplier is clearer if we rearrange eqn. (B.1)
to display a conversion factor whose numerical worth is unity:

1 = 1055.04
J

Btu

663
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Table B.1 SI Multiplying Factors

Multiple Prefix Symbol Multiple Prefix Symbol

1024 yotta Y 10−24 yocto y

1021 zetta Z 10−21 zepto z

1018 exa E 10−18 atto a

1015 peta P 10−15 femto f

1012 tera T 10−12 pico p

109 giga G 10−9 nano n

106 mega M 10−6 micro µ

103 kilo k 10−3 milli m

102 hecto h 10−2 centi c

101 deka da 10−1 deci d

The latter form is quite useful in changing units within more complex
equations. For example, the conversion factor

1 = 0.0001663
m/s

furlong/fortnight

could be multiplied by a velocity, on just one side of an equation, to
convert it from furlongs per fortnight1 to meters per second.

Note that the S.I. units may have prefixes placed in front of them to
indicate multiplication by various powers of ten. For example, the prefix
“k” denotes multiplication by 1000 (e.g., 1 km = 1000 m). The complete
set of S.I. prefixes is given in Table B.1.

Table B.2 provides multipliers for a selection of common units.

References

[B.1] B. N. Taylor. Guide to the Use of the International System of Units
(SI). National Institute of Standards and Technology, Gaithersburg,
MD, 1995. NIST Special Publication 811. May be downloaded from
NIST’s web pages.

1Shortly after World War II, a group of staff physicists at Boeing Airplane Co. an-
swered angry demands by engineers that calculations be presented in English units
with a report translated entirely into such dimensions as these.
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Table B.2 Selected Conversion Factors

Dimension SI = multiplier × other unit

Density kg/m3 = 16.018 × lbm/ft3

kg/m3 = 103 × g/cm3

Diffusivity (α, ν , D) m2/s = 0.092903 × ft2/s

m2/s = 10−6 × centistokes

Energy J = 1055.04 × Btua

J = 4.1868 × calb

J = 10−7 × erg

Energy per unit mass J = 2326.0 × Btu/lbm

J = 4186.8 × cal/g

Flow rate m3/s = 6.3090×10−5 × gal/min (gpm)

m3/s = 4.7195×10−4 × ft3/min (cfm)

m3/s = 10−3 × L/s

Force N = 10−5 × dyne

N = 4.4482 × lbf

Heat flux W/m2 = 3.154 × Btu/hr·ft2

W/m2 = 104 × W/cm2

Heat transfer coefficient W/m2K = 5.6786 × Btu/hr·ft2◦F

Length m = 10−10 × ångströms (Å)

m = 0.0254 × inches

m = 0.3048 × feet

m = 201.168 × furlongs

m = 1609.34 × miles

m = 3.0857× 1016 × parsecs

Mass kg = 0.45359 × lbm

kg = 14.594 × slug
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Table B.2…continued.

Dimension SI = multiplier × other unit

Power W = 0.022597 × ft·lbf/min

W = 0.29307 × Btu/hr

W = 745.700 × hp

Pressure Pa = 133.32 × mmHg (@0◦C)

Pa = 248.84 × inH2O (@60◦F)

Pa = 3376.9 × inHg (@60◦F)

Pa = 6894.8 × psi

Pa = 105 × bar

Pa = 101325 × atm

Specific heat capacity J/kg·K = 4186.8 × Btu/lbm·◦F
J/kg·K = 4186.8 × cal/g·◦C

Temperature K = 5/9 × ◦R
K = ◦C + 273.15

K = (◦F + 459.67)/1.8

Thermal conductivity W/m·K = 0.14413 × Btu·in/hr·ft2◦F
W/m·K = 1.7307 × Btu/hr·ft◦F
W/m·K = 418.68 × cal/s·cm◦C

Viscosity (dynamic) Pa·s = 10−3 × centipoise

Pa·s = 1.4881 × lbm/ft·s
Pa·s = 47.880 × lbf·s/ft2

Volume m3 = 10−3 × L

m3 = 3.7854× 10−3 × gallons

m3 = 0.028317 × ft3

a The British thermal unit, originally defined as the heat that raises 1 lbm of water 1◦F,
has several values that depend mainly on the initial temperature of the water warmed.
The above is the International Table (i.e., steam table) Btu. A “mean” Btu of 1055.87 J
is also common. Related quantities are: 1 therm = 105 Btu; 1 quad = 1015 Btu ≈ 1 EJ; 1
ton of refrigeration = 12,000 Btu/hr absorbed.
bThe calorie represents the heat that raises 1 g of water 1◦C. Like the Btu, the calorie

has several values that depend on the initial temperature of the water warmed. The
above is the International Table calorie, or IT calorie. A “thermochemical” calorie of
4.184 J has also been in common use. The dietitian’s “Calorie” is actually 1 kilocalorie.



C. Nomenclature

Arbitrary constants, coefficients, and functions introduced in context are
not included here; neither are most geometrical dimensions. Dimensions
of symbols are given in S.I. units in parenthesis after the definition. Sym-
bols without dimensions are noted with (–), where it is not obvious.

A,Ac,Ah,Aj

area (m2) or function defined
in eqn. (9.39); cross-sectional
area (m2); area of heater (m2);
jet cross-sectional area (m2)

B radiosity (W/m2), or the
function defined in Fig. 8.14.

Bm,i mass transfer driving force,
eqn. (11.88) (–)

b.c. boundary condition

b.l. boundary layer

C,Cc, Ch heat capacity rate (W/K) or
electrical capacitance (s/ohm)
or correction factor in
Fig. 7.16; heat capacity rate
for hot and cold fluids (W/K)

C average thermal molecular
speed

Cf skin friction coefficient (–)
[eqn. (6.33)]

Csf surface roughness factor (–).
(see Table 9.2)

c, cp, cv specific heat, specific heat at
constant pressure, specific
heat at constant

volume (J/kg·K)

c molar concentration of a
mixture (kmol/m3) or
damping coefficient (N·s/m)

c partial molar concentration of
a species i (kmol/m3)

co speed of light,
2.99792458× 108 m/s

D or d diameter (m)

Dh hydraulic diameter, 4Ac/P (m)

D12,Dim binary diffusion coefficient
for species 1 diffusing in
species 2, effective binary
diffusion coefficient for
species i diffusing in mixture
m, (m2/s)

E, E0 voltage, initial voltage (V)

e, eλ emissive power of a black
body (W/m2) or energy
equivalent of mass (J);
monochromatic emissive
power (W/m2·µm)

F LMTD correction factor (–) or
(ReTP/Ref )0.8 (–)

667
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F(t) time-dependent driving force
(N)

F1−2 view factor

F1−2 transfer factor

f Darcy-Weisbach friction
factor(–) [eqn. (3.24)] or
Blasius function of η (–)

fv frequency of vibration (Hz)

G superficial mass flux
= ṁ/Apipe

g,geff gravitational body force
(m/s2), effective g defined in
eqn. (8.60) (m/s2)

gm,i mass transfer coefficient for
species i, (kg/m2·s)

H height of ribbon (m), head (m),
irradiance (W/m2), or Henry’s
law constant (N/m2)

h,h local heat transfer coefficient
(W/m2K), or enthalpy (J/kg),
or height (m), or Planck’s
constant
(6.6260755× 10−34 J·s);
average heat transfer
coefficient.

ĥ specific enthalpy (J/kg)

hc interfacial conductance
(W/m2K)

hfg , hsf , hsg
latent heat of vaporization
(J/kg), latent heat of fusion
(J/kg), latent heat of
sublimation (J/kg)

h′fg latent heat corrected for
sensible heat

ĥi specific enthalpy of species i
(J/kg)

h∗ heat transfer coefficient at
zero mass transfer, in
Chapter 11 only (W/m2K)

I electric current (amperes) or
number of isothermal

increments (–)

�i, �j, �k unit vectors in the x,y, z
directions

i intensity of radiation (W/m2·
steradian)

I0(x) modified Bessel function of
the first kind of order zero

i.c. initial condition

J0(x), J1(x)
Bessel function of the first
kind of order zero, of order
one

�ji diffusional mass flux of
species i (kg/m2·s)

�J electric current density
(amperes/m2)

�J∗i diffusional mole flux of
species i (kmol/m2·s)

k thermal conductivity (W/m2K)

kB Boltzmann’s constant,
1.3806503× 10−23 J/K

kT thermal diffusion ratio (–)

L any characteristic length (m)

Le mean beam length (m)

LMTD logarithmic mean
temperature difference

Q an axial length or length into
the paper or mean free
molecular path (m or Å) or
mixing length (m)

M molecular weight (of mixture
if not subscripted) (kg/kmol)

m fin parameter,
√
hP/kA (m−1)

m0 rest mass (kg)

ṁ mass flow rate (kg/s), also
mass flux per unit width
(kg/m·s)

mi mass fraction of species i (–)
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ṁ′′ scalar mass flux of a mixture
(kg/m2·s)

N number of adiabatic channels
(–) or number of rows in a rod
bundle (–)

�N mole flux (of mixture if not
subscripted) (kmol/m2·s)

NA Avogadro’s number,
6.02214199× 1026

molecules/kmol

N number density (of mixture if
not subscripted)
(molecules/m3)

�n mass flux (of mixture if not
subscripted) (kg/m2·s), unit
normal vector

n summation index (–) or
nucleation site density
(sites/m2)

P factor (–) defined in
eqn. (3.14) or pitch of a tube
bundle (m) or perimeter (m)

p pressure (N/m2)

pi partial pressure of species i
(N/m2)

Q rate of heat transfer (W)

q, �q heat flux (W/m2)

qb, qFC, qi
defined in context of
eqn. (9.36)

qmax or qburnout

peak boiling heat flux (W/m2)

qmin minimum boiling heat flux
(W/m2)

q̇ volumetric heat generation
(W/m3)

R factor defined in eqn. (3.14)
(–), radius (m), electrical
resistance (ohm), or region
(m3)

R ideal gas constant per unit
mass, R◦/M (for mixture if
not subscripted) (J/kg·K)

R◦ ideal gas constant, 8314.472
(J/kmol·K)

Rt, Rf thermal resistance (K/W or
m2·K/W), fouling resistance
(m2·K/W)

r , �r radial coordinate (m), position
vector (m)

rcrit critical radius of insulation
(m)

ṙi volume rate of creation of
mass of species i (kg/m3·s)

S entropy (J/K), or surface
(m2), or shape factor (N/I), or
function defined in Fig. 9.22

SL, ST rod bundle spacings (m). See
Fig. 7.13

s specific entropy (J/kg·K)
T , Tc temperature (◦C, K);

thermodynamic critical
temperature (K)

T time constant, ρcV/hA (s)

T a long time over which
properties are averaged (s)

t time (s)

U overall heat transfer
coefficient (W/m2K); internal
thermodynamic energy (J);
characteristic velocity (m/s)

u,uav, u
local x-direction fluid velocity
(m/s) or specific energy (J/kg);
average velocity over an area
(m/s); local time-averaged
velocity (m/s);

�u,uc,ug vectorial velocity (m/s);
characteristic velocity (m/s)
[see eqn. (8.18)];
Helmholtz-unstable velocity
(m/s)
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û specific internal energy (J/kg)

V volume (m3); voltage (V)

Vm molal specific volume
(m3/kmol)

v local y-direction fluid velocity
(m/s)

�v mass-average velocity, in
Chapter 11 only (m/s)

�vi average velocity of species i
(m/s)

�v∗ mole average velocity (m/s)

Wk rate of doing work (W)

w z-direction velocity (m/s) or
width (m)

Xtt Martinelli parameter (–)

x,y, z Cartesian coordinates (m); x
is also used to denote any
unknown quantity

xi mole fraction of species i (–)

x quality of steam

Greek symbols

α thermal diffusivity, k/ρcp
(m2/s), or helix angle (rad.)

α,αg absorptance (–); gaseous
absorptance (–)

β coefficient of thermal
expansion (K−1) or relaxation
factor (–), or h

√
αt/k, or

coefficient of viscous friction
(–)

βλ monochromatic extinction
coefficient (m−1)

Γ , Γc ġL2/k∆T , mass flow rate in
film (kg/m·s)

γ cp/cv ; electrical conductivity
(V/ohm·m2)

γλ monochromatic scattering
coefficient (m−1)

∆E Activation energy of reaction
(J/kmol)

∆p pressure drop in any system
(N/m2)

∆T any temperature difference;
various values are defined in
context.

δ,δc, δt, δ′t
flow boundary layer thickness
(m) or condensate film
thickness (m); concentration
boundary layer thickness (m);
thermal boundary layer
thickness (m); h/k (m).

ε emittance (–); heat exchanger
effectiveness (–); roughness
(m); fin efficiency (–)

εA, εAB potential well depth for
molecules of A, for collisions
of A and B (J)

εg gaseous emittance (–)

εm, εh eddy diffusivity of mass (–), of
heat (–)

η independent variable of
Blasius function, y

√
u∞/νx

(–)

ηf fin efficiency

Θ a ratio of two temperature
differences (–)

θ (T − T∞) (K) or angular
coordinate (rad)

ζ x
/√
αt

κλ monochromatic absorption
coefficient (m−1)

λ, λc, λH wavelength (m) or eigenvalue
(m−1); critical Taylor
wavelength (m);
Helmholtz-unstable
wavelength (m)
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λd, λd1 , λd2

most dangerous
Taylor-unstable wavelength
(m); subscripts denote one-
and two-dimensional values

λ̂ dimensionless eigenvalue (–)

µ dynamic viscosity (kg/m·s)
or chemical potential (J/mol)

ν kinematic viscosity, µ/ρ
(m2/s)

ξ x/L or x
√
ω/2α; also

(x/L+ 1) or x/L (–)

ρ mass density (kg/m3) or
reflectance (–)

ρi partial density of ith species
(kg/m3)

σ surface tension (N/m) or
Stefan-Boltzmann constant
5.670400× 10−8 (W/m2·K4)

σA,σAB collision cross section of
molecules of A, for collisions
of A with B (Å)

τ transmissivity (–) or
dimensionless time (T/T ) or
shear stress (N/m2) or length
of travel in b.l. (m)

τw, τyx shear stress on a wall (N/m2),
shear stress in the x-direction
on the plane normal to the
y-direction (N/m2)

τδ shear stress exerted by liquid
film (N/m2)

Φ ∆T
/
(q̇L2/k) or fraction of

total heat removed (see
Fig. 5.10) (–)

φ angular coordinate (rad), or
δt/δ (–), or factor defined in
context of eqn. (6.103) (–)

φij weighting functions for
mixture viscosity or thermal
conductivity (–)

χ dΘ/dζ

ψ ωL2
/
α

Ω ωt

ΩD,Ωk,Ωµ

collision integral for
diffusivity, thermal
conductivity, or dynamic
viscosity (–)

ω frequency of a wave or of
rotation (rad/s) or solid angle
(sr)

General subscripts

av, avg denoting bulk or average
values

b, body denoting any body

b denoting a black body

c denoting the critical state

D denoting a value based on D

e, et denoting a dynamical entry
length or a free stream
variable; denoting a thermal
entry length

i denoting initial or inside
value, or a value that changes
with the index i, or values for
the ith species in a mixture

f ,g denoting saturated liquid and
vapor states

in denoting a value at the inlet

L denoting a value based on L
or at the left-hand side

m denoting values for mixtures

max, min denoting maximum or
minimum values

NB denoting nucleate boiling

n denoting a value that changes
with the index n

o denoting outside, in most
cases
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out denoting a value at the outlet

R denoting a value based on R
or at the right-hand side

s denoting values above an
interface

sfc denoting conditions at a
surface

sup, sat, sub
denoting superheated,
saturated, or subcooled states

TP denoting a two-phase value

w denoting conditions at a wall

u denoting values below an
interface

x denoting a local value at a
given value of x

∞ denoting conditions in a fluid
far from a surface

λ denoting radiative properties
evaluated at a particular
wavelength

General superscript

* denoting values for zero net
mass transfer (used in
Chapter 11 only)

Dimensionless parameters

Bi Biot number, hL/kbody

Bo Bond number,
L2g(ρf − ρg)/σ

Da Damkohler number,
ρA′ exp(−∆E/R◦T)/g∗m

Ec Eckert number, u2/(cp∆T)

Fo Fourier number, αt/L2

Fr Froude number, U2/(gL)

GrL Grashof number, gβ∆TL3/ν2

(for heat transfer), or
g(∆ρ/ρ)L3/ν2

Gz Graetz number, RePrD/x

H′ L′ based on L ≡ H

Ja Jakob number, cp∆T/hfg
j Colburn j-factor, St Pr2/3

Ku Kutateladze number,
(π/24)(qmax/qmaxz )

L′ L
√
g(ρf − ρg)/σ

Le Lewis number, Sc/Pr = α/Dim

Ma Mach number,
u/(sound speed)

NTU number of transfer units,
UA/Cmin

NuL Nusselt number, hL/kfluid

Num,L Nusselt number for mass
transfer (or Sherwood
number) g∗m,iL/(ρDim)

PeL Péclét number, UL/α = Re Pr

Pr, Prt Prandtl number,
µcp/k = ν/α; turbulent
Prandtl number, εm/εh

RaL, Rayleigh number,
Gr Pr = gβ∆TL3/(να) for
heat transfer;
g(∆ρ/ρ)L3/(νD12) for mass
transfer

Ra∗L RaLNuL = gβqwL4
/
(kνα)

ReL,Rec,Ref
Reynolds number, UL/ν ;
condensation Re equal to
Γc/µ; Re for liquid

Sc Schmidt number for species i
in mixture m, ν/Dim

ShL Sherwood number,
g∗m,iL/(ρDim)

St Stanton number,
Nu/(Re Pr) = h/(ρcpu)

Str Strouhal number, fvD/u∞

WeL Weber number, ρgU2∞L/σ

Π any dimensionless group
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