NoDoC, Cost  Engineering  Data  Warehouse for Cost Management of Oil & Gas Projects
Follow us
  • Home
  • About
  • NoDoC
  • Blog
  • Training
  • Customers
  • Library
    • Books
  • Pedia
    • Upstream >
      • Reservoir Eng. >
        • Reservoir Properties
        • Reservoir Geology
        • Well Charting
        • Reservoir Geophysics
        • Reservoir Petrophysics
        • Well Testing
        • Reservoir Modeling
      • Exploration >
        • Evaluation
        • Geology
        • Geophysics
        • Geochemistry
        • Petrophysics
        • Simulation
        • valuation
      • Drilling >
        • Casing\Tubing
        • Tools & Accessories , Downhole Eqiupment
        • Technologies
        • Offshore Platforms
        • Drilling Services
        • Vessels-Offshore
        • Subcontractors
        • Drilling Rigs
        • Drilling Fluids
      • Completion >
        • Well Completion
        • Well Logging
        • Well Stimulation
        • Sand Control
        • Sediment Prevention
        • Well Performance
        • Wellhead Facilities
      • Enhanced Recovery >
        • Thermal Methods
        • Non Thermal Methods
        • ESP
        • Wellsite Optimization Equipment
        • Technical Assessment
        • Economic Analysis
    • Midstream >
      • Oil & Gas Processing >
        • Gathering Systems
        • Separation
        • Treatment
        • Dehydration
        • Desalination
        • Chemical lnjection
      • Transportation >
        • Gas Transfer Pipeline
        • Oil Transfer Pipeline
        • Tankers
        • Vessels
        • FPSO
      • Storage >
        • Petroleum Storage
        • Gas Storage
        • Underground Storages
        • Loading Arm
    • DownStream >
      • Refining Oil >
        • Desalting
        • Atmospheric Distillation
        • Hydro Treating
        • Reforming
        • Isomerization
        • Vacuum Distillation
        • Alkylation
        • Visbreaking
        • Catalytic Cracking
        • Cocking
      • Refining Gas >
        • Condensate & Water Removal
        • Acid Gas Removal
        • Dehydration
        • Mercury Removal
        • Nitrogen Rejection
        • NGL Recovery
        • Fractionation
        • Gas Sweetening
        • Tail Gas Treating
        • SRU
        • SUG
      • Distribution >
        • Residential
        • Commercial
        • Electric Power Generation
        • Piping
        • Tankers
        • CNG
        • Gas Station
        • Rail
        • Trucks
      • Sub Products >
        • Basic Unit
        • Intermediate unit
        • Parrafines
        • Olefines
        • Aromatics
        • Chemicals from Acetylene
        • Chemicals from Natural Gas
        • Chemicals from Synthesis Gas
        • Inotganic Petrochemicals
        • Methanol
    • Sample DB
    • Training
    • Petroeconomics
  • Thermopedia
  • Contact
  • Members Area
    • WJO Support Center
    • CNPCI SUPPORT CENTER
    • MAPNA SUPPORT CENTER
    • PEDCO SUPPORT CENTER
    • Vitara SUPPORT CENTER
    • KNPO SUPPORT CENTER
    • OTHER CUSTOMERS SUPPORT CENTER
  • Category
  • Uploads

Cocking

 Because the simple distillation of crude oil produces amounts and types of products that are not consistent with those required by the marketplace, subsequent refinery processes change the product mix by altering the molecular structure of the hydrocarbons. One of the ways of accomplishing this change is through "cracking," a process that breaks or cracks the heavier, higher boiling-point petroleum fractions into more valuable products such as gasoline, fuel oil, and gas oils. The two basic types of cracking are thermal cracking, using heat and pressure, and catalytic cracking.

Coking is a severe method of thermal cracking used to upgrade heavy residuals into lighter products or distillates. Coking produces straight-run gasoline (coker naphtha) and various middle-distillate fractions used as catalytic cracking feedstock. The process so completely reduces hydrogen that the residue is a form of carbon called "coke." The two most common processes are delayed coking and continuous (contact or fluid) coking. NoDoC cost estimation models include three types of coking (sponge coke, honeycomb coke, and needle coke) which are depending upon the reaction mechanism, time, temperature, and the crude feedstock.

The processes that NoDoC estimate the cost for three types of coking are described below:

Delayed Coking

In delayed coking the heated charge (typically residuum from atmospheric distillation towers) is transferred to large coke drums which provide the long residence time needed to allow the cracking reactions to proceed to completion. Initially the heavy feedstock is fed to a furnace which heats the residuum to high temperatures (900°-950° F) at low pressures (25-30 psi) and is designed and controlled to prevent premature coking in the heater tubes. The mixture is passed from the heater to one or more coker drums where the hot material is held approximately 24 hours (delayed) at pressures of 25-75 psi, until it cracks into lighter products. Vapors from the drums are returned to a fractionator where gas, naphtha, and gas oils are separated out. The heavier hydrocarbons produced in the fractionator are recycled through the furnace.

After the coke reaches a predetermined level in one drum, the flow is diverted to another drum to maintain continuous operation. The full drum is steamed to strip out uncracked hydrocarbons, cooled by water injection, and decoked by mechanical or hydraulic methods. The coke is mechanically removed by an auger rising from the bottom of the drum. Hydraulic decoking consists of fracturing the coke bed with high-pressure water ejected from a rotating cutter.

CONTINUOUS COKING

Continuous (contact or fluid) coking is a moving-bed process that operates at temperatures higher than delayed coking. In continuous coking, thermal cracking occurs by using heat transferred from hot, recycled coke particles to feedstock in a radial mixer, called a reactor, at a pressure of 50 psi. Gases and vapors are taken from the reactor, quenched to stop any further reaction, and fractionated. The reacted coke enters a surge drum and is lifted to a feeder and classifier where the larger coke particles are removed as product. The remaining coke is dropped into the preheater for recycling with feedstock. Coking occurs both in the reactor and in the surge drum. The process is automatic in that there is a continuous flow of coke and feedstock.

  

Copyright@ 2016-2017  Dione Oil Ltd.
✕